Local optical tomography of a nerve cell

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The presented modification of the method of local optical tomography makes it possible to study the dynamic processes of subcellular structures of native nerve cells. The advantage of this approach is that it is possible to analyze the dynamics of the distribution of neuron structures at a point or area of interest inside the cell without performing a complete reconstruction of the cell image. It has been proved that it becomes possible to determine the dimensions, the cell area of interest, and the coordinates of subcellular structures for further study of their dynamics. In this modification, the method of local tomography could be used to study both cells and cellular structures, because it is not necessary to probe a full field of view. Local probing of the region of interest during the functioning of the nerve cell will, firstly, reduce the time of data recording for obtaining local tomograms, and, secondly, provide the opportunity to explore the dynamics of several regions inside the cell at the same time.

About the authors

G. G Levin

All-Russian Research Institute of Optical and Physical Measurements

Moscow, Russia

A. A Samoilenko

All-Russian Research Institute of Optical and Physical Measurements

Moscow, Russia

T. A Kazakova

Lomonosov Moscow State University

Moscow, Russia

T. A Marakutsa

National Research Technological University “MISiS”

Moscow, Russia

G. V Maksimov

Lomonosov Moscow State University;National Research Technological University “MISiS”

Email: gmaksimov@mail.ru
Moscow, Russia;Moscow, Russia

References

  1. A. I. Yusipovich, E. Yu. Parshina, A. A. Baizhumanov, et al., Instruments and Experimental Techniques, 64 (6), 877 (2021).
  2. А. И. Юсипович, С. М. Новиков, Т. А. Казакова и др., Квантовая электроника, 36 (9), 874 (2006).
  3. http://www.tomocube.com (дата посещения 01.08.2022).
  4. G. N. Vishnyakov, G. G. Levin, V. L. Minaev, et al., Microscopy and Analysis, 87, 19 (2004).
  5. M. Slaney and A. C. Kak, Proc. SPIE, 413, 2 (1983).
  6. T. A. Kazakova, O. N. Suchalko, A. D. Ivanov, et al., bioRxiv (The preprint server for biology) (2020).
  7. T. A. Kazakova, A. I. Yusipovich, and G. V. Maksimov, Вестн. МГТУ им. Н.Э. Баумана (Естественные науки), 6 (93), 137 (2020).
  8. G. N. Vishnyakov, G. G. Levin, V.L. Minaev, et.al., Opt. Spectrosc., 125, 1065 (2018).
  9. G. N. Vishnyakov, G. G. Levin, et al., Proc. SPIE, 348, 596 (1982).
  10. Э. И. Вайнберг, И. А. Казак и В. П. Курозаев, ДАН СССР, 257 (1), 89 (1981).
  11. A. Faridani, E. L. Ritman, and K. T. Smith, J. Appl. Math., 52 (2), 459 (1992).
  12. А. Р. Браже, Н. А. Браже, О. В. Сосновцева и др., Компьютерные исследования и моделирование, 1 (1), 77 (2009).
  13. A. A. Platonova, S. V. Koltsova, G. V. Maksimov, et al., Biophysics, 58, 389 (2013).
  14. N. S. Bondarenko, A. I. Yusipovich, S. S. Kovalenko, et al., Biologicheskie Membrany, 30 (3), 199 (2013).
  15. A. I. Yusipovich, Yu. Berestovskaya, V. Shutova, et al., Measurement Techniques, 55 (3), 351 (2012)
  16. A. R. Brazhe, N. A. Brazhe, G. V. Maksimov, et al., J. Biomed. Optics, 13 (3), 034004 (2008).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies