Structure and Evolution of the AqE Gene in Insects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

AqE gene encodes a sulfolactate dehydrogenase-like enzyme of the LDH2/MDG2 oxidoreductase family. The gene was found in representatives of taxa of bacteria and fungi, as well as animals and plants whose lifestyle is associated with the aquatic environment. The AqE gene is also present in arthropods and, in particular, in the class of insects that are predominantly terrestrial. In our work, we studied the distribution and structure of the AqE gene in the class of insects in order to trace its evolutionary fate. We found that the studied gene is not present in all orders/suborders of insects, there is a loss of the gene. In some orders, it is duplicated or multiplied. The variability of the gene both in length and in exon-intron structure was established ‒ from intronless to multi-intron. It was found that the multiplication of the AqE gene of insects has an ancient nature, but there are also “young” duplications. It is possible that in connection with the appearance of paralogs, the gene acquired a new function.

About the authors

L. V. Puzakova

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Author for correspondence.
Email: kvluda@yandex.ru
Russia, 299011, Sevastopol

M. V. Puzakov

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: kvluda@yandex.ru
Russia, 299011, Sevastopol

References

  1. Honka E., Fabry S., Niermann T., Palm P., Hensel R. (1990) Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. Eur. J. Biochem. 188, 623–632. https://doi.org/10.1111/j.1432-1033.1990.tb15443.x
  2. Jendrossek D., Kratzin H.D., Steinbuchel A. (1993) The Alcaligenes eutrophus ldh structural gene encodes a novel type of lactate dehydrogenase. FEMS Microbiol. Lett. 112, 229–235. https://doi.org/10.1111/j.1574-6968.1993.tb06453.x
  3. Muramatsu H., Mihara H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N. (2005) The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. J. Biol. Chem. 280(7), 5329‒5335. https://doi.org/10.1074/jbc.M411918200
  4. Muramatsu H., Mihara H., Goto M., Miyahara I., Hirotsu K., Kurihara T., Esaki N. (2005) A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J. Biosci. Bioeng. 99, 541‒754. https://doi.org/10.1263/jbb.99.541
  5. Puzakova L.V., Puzakov M.V., Soldatov A.A. (2019) Gene encoding a novel enzyme of LDH2/MDH2 family is lost in plant and animal genomes during transition to land. J. Mol. Evol. 87, 52‒59. https://doi.org/10.1007/s00239-018-9884-2
  6. Irimia A., Madern D., Zaccaï G., Vellieux F.M. (2004) Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J. 23, 1234‒1244. https://doi.org/10.1038/sj.emboj.7600147
  7. Denger K., Cook A.M. (2010) Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. Microbiology (Reading). 156, 967‒974. https://doi.org/10.1099/mic.0.034736-0
  8. Zhang Y., Schofield L.R., Sang C., Dey D., Ronimus R.S. (2017) Expression, purification, and characterization of (R)-sulfolactate dehydrogenase (ComC) from the rumen methanogen Methanobrevibacter millerae SM9. Archaea. 6, 5793620. https://doi.org/10.1155/2017/5793620
  9. Puzakova L.V., Puzakov M.V., Gostyukhina O.L. (2021) Newly discovered AqE gene is highly conserved in non-tetrapod vertebrates. J Mol Evol. 89, 214‒224. https://doi.org/10.1007/s00239-021-09997-x
  10. Berthelot C., Brunet F., Chalopin D., Juanchich A., Bernard M., Noël B., Bento P., Da Silva C., Labadie K., Alberti A., Aury J. M., Louis A., Dehais P., Bardou P., Montfort J., Klopp C., Cabau C., Gaspin C., Thorgaard G.H., Boussaha M., Quillet E., Guymard R., Galiana D., Bobe J., Volff J.N., Genêt C., Wincker P., Jaillon O., Roest Crollius H., Guiguen Y. (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5, 3657.
  11. Petit J., David L., Dirks R., Wiegertjes G.F. (2017) Genomic and transcriptomic approaches to study immunology in cyprinids: what is next? Devel. Compar. Immunol. 75, 48‒62.
  12. Пузакова Л.В., Пузаков М.В. (2022) Тканеспецифичность активности гена AqE у желтого горбыля Larimichthys crocea. Генетика. 58, 540–549.
  13. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389‒3402. https://doi.org/10.1093/nar/25.17.3389
  14. Edgar R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792‒1797. https://doi.org/10.1093/nar/gkh340
  15. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547‒1549. https://doi.org/10.1093/molbev/msy096
  16. Rogozin I.B., Carmel L., Csuros M., Koonin E.V. (2012) Origin and evolution of spliceosomal introns. Biol. Direct. 7, 11. https://doi.org/10.1186/1745-6150-7-11
  17. Cardoso-Moreira M., Long M. (2012) The origin and evolution of new genes. In: Evolutionary Genomics. Methods Mol. Biol. (Methods and Protocols). Ed. Anisimova M. 856. Humana Press, 161–186. https://doi.org/10.1007/978-1-61779-585-5_7
  18. Taylor J.S., Raes J. (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615‒643. https://doi.org/10.1146/annurev.genet.38.072902.092831
  19. Lynch M., Conery J.S. (2000) The evolutionary fate and consequences of duplicate genes. Science. 290, 1151‒1155. https://doi.org/10.1126/science.290.5494.1151
  20. Журавлева Г.А., Инге-Вечтомов С.Г. (2009) Возникновение новых белков за счет дупликации генов ‒ что общего в эволюции зрительных цветочувствительных белков и факторов терминации трансляции. Молекуляр. биология. 43, 759‒771.
  21. Copley S.D. (2017) Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47, 167‒175. https://doi.org/10.1016/j.sbi.2017.11.001
  22. Ohno S. (1970) Introduction. In: Evolution by Gene Duplication. Berlin, Heidelberg: Springer, https://doi.org/10.1007/978-3-642-86659-3_1
  23. Hahn M.W. (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J. Hered. 100, 605‒617. https://doi.org/10.1093/jhered/esp047
  24. Markert C.L. (1971) Developmental Genetics. Heinrich Ursprung. 214 p.
  25. Markert C.L., Shaklee J.B., Whitt G.S. (1975) Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 189, 102‒114. https://doi.org/10.1126/science.1138367
  26. Zuckerkandl E. (1978) Multilocus enzymes, gene regulation, and genetic sufficiency. J. Mol. Evol. 12, 57‒89. https://doi.org/10.1007/BF01732545
  27. Eventhoff W., Rossman M. G. (1975) The evolution of the dehydrogenases and kinases. CRC Crit. Rev. Biochem. 3, 111–140.
  28. Moreau R., Dabrowski K. (1998) Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): an agnathan fish with gulonolactone oxidase activity. Proc. Natl. Acad. Sci. USA. 95, 10279‒10282. https://doi.org/10.1073/pnas.95.17.10279
  29. Drouin G., Godin J.R., Pagé B. (2011) The genetics of vitamin C loss in vertebrates. Curr Genomics. 12, 371‒378. https://doi.org/10.2174/138920211796429736
  30. Albalat R., Cañestro C. (2016) Evolution by gene loss. Nat. Rev. Genet. 17, 379‒391. https://doi.org/10.1038/nrg.2016.39
  31. Greenberg A.J., Moran J.R., Coyne J.A., Wu C.I. (2003) Ecological adaptation during incipient speciation revealed by precise gene replacement. Science. 302, 1754‒1757. https://doi.org/10.1126/science.1090432
  32. Graupner M., Xu H., White R.H. (2000) Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J. Bacteriol. 182, 3688–3692.
  33. Мещерякова О.В. (2004) Динамика активности изоферментов лактатдегидрогеназы, малатдегидрогеназы и α-глицерофосфатдегидрогеназы в процессе адаптации рыб к различным факторам окружающей среды. Автореферат дисс. канд. биол. наук. Петрозаводск. 24 с.
  34. Kandoi D., Mohanty S., Tripathy B.C. (2018) Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. Protoplasma. 255, 547‒563. https://doi.org/10.1007/s00709-017-1168-y
  35. Wang Q.J., Sun H., Dong Q.L., Sun T.Y., Jin Z.X., Hao Y.J., Yao Y.X. (2016) The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol. J. 14, 1986–1997.
  36. Yao Y.X., Dong Q.L., Zhai H., You C.X., Hao Y.J. (2011) The functions of an apple cytosolic malate dehydrogenase gene in growth and tolerance to cold and salt stresses. Plant Physiol. Bioch. 49, 257–264.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (591KB)
3.

Download (260KB)

Copyright (c) 2023 Л.В. Пузакова, М.В. Пузаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies