A Review on Potential Application of CRISPR/Cas Systems in the Improvement of the Growth Habits and Fruit Quality of Tomato (Solanum lycopersicum) in Vietnam

Tong Van Hai 1 , Trinh Thi Thu Thuy 1 , Phan Thi Hien 1 , Chu Duc Ha 2 , La Viet Hong 3 , Tran Van Tien 4 and Nguyen Quoc Trung 1

1Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
2Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University of Hanoi, Hanoi 155400, Vietnam
3Faculty of Biology - Agricultural technology, Hanoi Pedagogical University 2, Vinh Phuc 283000, Vietnam
4National Academy of Public Administration, Hanoi 115000, Vietnam
Received: Aug 16, 2021 /
Revised: Mar 30, 2022 /
Published: Mar 30, 2022

Main Article Content

Full-Text | pdf

Abstract

Tomato (Solanum lycopersicum) is known as the most important vegetable crop that is widely cultivated throughout the world. Improvements of the growth, development, and productivity have become core strategies for the sustainable development of tomato in many countries. Here, we performed an intensive summary of recent applications of genome editing in customizing the growth habits and fruit quality in tomato plants. First, the advantages of genome editing, particularly CRISPR/Cas systems, were introduced. We then summarized all up-to-date studies related to the genome editing-based functional characterization of genes of interest in tomato with the aim of designing the growth habits and enhancing the fruit quality. Finally, we discussed the potential applications of this promising tool in tomato breeding programs in Vietnam. Taken together, our review has provided a wide view for further studies towards improving the growth, development, and productivity of tomato in Vietnam.

Keywords: Tomato, genome editing, CRISPR/Cas, growth habits, fruit quality

Article Details

How to Cite
Hai, T., Thuy, T., Hien, P., Ha, C., Hong, L., Tien, T., & Trung, N. (2022). A Review on Potential Application of CRISPR/Cas Systems in the Improvement of the Growth Habits and Fruit Quality of Tomato (Solanum lycopersicum) in Vietnam. Vietnam Journal of Agricultural Sciences, 5(1), 1424-1433. https://doi.org/10.31817/vjas.2022.5.1.09

References

    Beecher G. R. (1998). Nutrient content of tomatoes and tomato products. Proceedings of the Society for Experimental Biology and Medicine. 218(2): 98-100.
    Bui Manh Minh, Ha Hong Hanh, Le Thi Thu Hien, Huynh Thi Thu Hue (2020). Construction of CRISPR/Cas9 expression vectors habouring gRNA targeted on SlIAA9 gene of tomato. Tap chi Cong nghe Sinh hoc. 18(1): 147-156.
    Brooks C., Nekrasov V., Lippman Z. B. & Van Eck J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology. 166(3): 1292-1297.
    Chaudhary J., Deshmukh R. & Sonah H. (2019). Mutagenesis approaches and their role in crop improvement. Plants. 8(11): 467.
    Dao Quang Ha, Nguyen Thi Bich Ngoc, Huynh Thi Thu Hue (2021). Construction of CRISPR/Cas9 vector for silencing CIF1 gene of tomato. TNU Journal of Science and Technology, 226(14): 105-113.
    D’Ambrosio C., Stigliani A. L. & Giorio G. (2018). CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Research. 27(4): 367-378.
    Gerszberg A. & Hnatuszko-Konka K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation. 83(2): 175-198.
    Honda C., Ohkawa K., Kusano H., Teramura H. & Shimada H. (2021). A simple method for in planta tomato transformation by inoculating floral buds with a sticky Agrobacterium tumefaciens suspension. Plant Biotechnology, 38(1): 153-156.
    Imran M., Ghorat F., Ul-Haq I., Ur-Rehman H., Aslam F., Heydari M., Shariati M. A., Okuskhanova E., Yessimbekov Z., Thiruvengadam M., Hashempur M. H. & Rebezov M. (2020). Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants. 9(8): 706.
    Ito Y., Nishizawa-Yokoi A., Endo M., Mikami M. & Toki S. (2015). CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications. 467(1): 76-82.
    Jia H. & Wang N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One. 9(4): e93806.
    Khan Z., Khan S. H., Mubarik M. S., Sadia B. & Ahmad A. (2017). Use of TALEs and TALEN Technology for Genetic Improvement of Plants. Plant Molecular Biology Reporter. 35(1): 1-19.
    Klap C., Yeshayahou E., Bolger A. M., Arazi T., Gupta S. K., Shabtai S., Usadel B., Salts Y. & Barg R. (2017). Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnology Journal. 15(5): 634-647.
    Koike S., Matsukura C., Takayama M., Asamizu E. & Ezura H. (2013). Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.). Plant Cell Physiology. 54(5): 793-807.
    Lee J., Nonaka S., Takayama M. & Ezura H. (2018). Utilization of a Genome-Edited Tomato (Solanum lycopersicum) with High Gamma Aminobutyric Acid Content in Hybrid Breeding. Journal of Agricultural and Food Chemistry. 66(4): 963-971.
    Li R., Li R., Li X., Fu D., Zhu B., Tian H., Luo Y. & Zhu H. (2018a). Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal. 16(2): 415-427.
    Li T., Yang X., Yu Y., Si X., Zhai X., Zhang H., Dong W., Gao C. & Xu C. (2018b). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology. 36: 1160-1163. DOI:10.1038/nbt.4273.
    Li X., Wang Y., Chen S., Tian H., Fu D., Zhu B., Luo Y. & Zhu H. (2018c). Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing. Frontiers in Plant Science. 9(559).
    Liang Z., Zhang K., Chen K. & Gao C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics . 41(2): 63-68.
    Miller E. C., Giovannucci E., Erdman J. W., Jr., Bahnson R., Schwartz S. J. & Clinton S. K. (2002). Tomato products, lycopene, and prostate cancer risk. Urologic Clinics of North America . 29(1): 83-93.
    Mueller L. A., Lankhorst R. K., Tanksley S. D., Giovannoni J. J., White R., Vrebalov J., Fei Z., van Eck J., Buels R., Mills A. A., Menda N., Tecle I. Y., Bombarely A., Stack S., Royer S. M., Chang S.-B., Shearer L. A., Kim B. D., Jo S.-H., Hur C.-G., Choi D., Li C.-B., Zhao J., Jiang H., Geng Y., Dai Y., Fan H., Chen J., Lu F., Shi J., Sun S., Chen J., Yang X., Lu C., Chen M., Cheng Z., Li C., Ling H., Xue Y., Wang Y., Seymour G. B., Bishop G. J., Bryan G., Rogers J., Sims S., Butcher S., Buchan D., Abbott J., Beasley H., Nicholson C., Riddle C., Humphray S., McLaren K., Mathur S., Vyas S., Solanke A. U., Kumar R., Gupta V., Sharma A. K., Khurana P., Khurana J. P., Tyagi A., Sarita, Chowdhury P., Shridhar S., Chattopadhyay D., Pandit A., Singh P., Kumar A., Dixit R., Singh A., Praveen S., Dalal V., Yadav M., Ghazi I. A., Gaikwad K., Sharma T. R., Mohapatra T., Singh N. K., Szinay D., de Jong H., Peters S., van Staveren M., Datema E., Fiers M. W. E. J., van Ham R. C. H. J., Lindhout P., Philippot M., Frasse P., Regad F., Zouine M., Bouzayen M., Asamizu E., Sato S., Fukuoka H., Tabata S., Shibata D., Botella M. A., Perez-Alonso M., Fernandez-Pedrosa V., Osorio S., Mico A., Granell A., Zhang Z., He J., Huang S., Du Y., Qu D., Liu L., Liu D., Wang J., Ye Z., Yang W., Wang G., Vezzi A., Todesco S., Valle G., Falcone G., Pietrella M., Giuliano G., Grandillo S., Traini A., D'Agostino N., Chiusano M. L., Ercolano M., Barone A., Frusciante L., Schoof H., Jöcker A., Bruggmann R., Spannagl M., Mayer K. X. F., Guigó R., Camara F., Rombauts S., Fawcett J. A., Van de Peer Y., Knapp S., Zamir D. & Stiekema W. (2009). A snapshot of the emerging tomato genome sequence. The Plant Genome. 2(1):78-92.
    Nonaka S., Arai C., Takayama M., Matsukura C. & Ezura H. (2017). Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports. 7(1): 7057.
    Oladosu Y., Rafii M. Y., Abdullah N., Hussin G., Ramli A., Rahim H. A., Miah G. & Usman M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment. 30(1): 1-16.
    Pan C., Ye L., Qin L., Liu X., He Y., Wang J., Chen L. & Lu G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports. 6(1): 24765.
    Roldan M. V. G., Périlleux C., Morin H., Huerga-Fernandez S., Latrasse D., Benhamed M. & Bendahmane A. (2017). Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Scientific Reports. 7(1): 4402.
    Rothan C., Diouf I. & Causse M. (2019). Trait discovery and editing in tomato. Plant Journal. 97(1): 73-90.
    Salava H., Thula S., Mohan V., Kumar R. & Maghuly F. (2021). Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. International Journal of Molecular Sciences. 22(2).
    Scholthof K. B., Adkins S., Czosnek H., Palukaitis P., Jacquot E., Hohn T., Hohn B., Saunders K., Candresse T., Ahlquist P., Hemenway C. & Foster G. D. (2011). Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 12(9): 938-54.
    Shan Q., Wang Y., Li J. & Gao C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols. 9(10): 2395-410.
    Sharma M. K., Solanke A. U., Jani D., Singh Y. & Sharma A. K. (2009). A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. Journal Biosciences. 34(3): 423-33.
    Sikora P., Chawade A., Larsson M., Olsson J. & Olsson O. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics. 2011: 314829-314829.
    Soyk S., Lemmon Z. H., Oved M., Fisher J., Liberatore K. L., Park S. J., Goren A., Jiang K., Ramos A., van der Knaap E., Van Eck J., Zamir D., Eshed Y. & Lippman Z. B. (2017). Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell. 169(6): 1142-1155.e12.
    Sun S., Wang X., Wang K. & Cui X. (2020). Dissection of complex traits of tomato in the post-genome era. 133(5): 1763-1776.
    Tomlinson L., Yang Y., Emenecker R., Smoker M., Taylor J., Perkins S., Smith J., MacLean D., Olszewski N. E. & Jones J. D. G. (2019). Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele. Plant Biotechnology Journal. 17(1): 132-140.
    Turnbull C., Lillemo M. & Hvoslef-Eide T. A. K. (2021). Global Regulation of genetically modified crops amid the gene edited crop boom - A review. Frontiers in Plant Science. 12: 630396-630396.
    Ueta R., Abe C., Watanabe T., Sugano S. S., Ishihara R., Ezura H., Osakabe Y. & Osakabe K. (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports. 7(1): 507.
    Van Eck J. (2017). Gene editing in tomatoes. Emerging Topics in Life Sciences. 1(2): 183-191.
    Vu T. V., Das S., Tran M. T., Hong J. C. & Kim J.-Y. (2020). Precision genome engineering for the breeding of tomatoes: Recent progress and future perspectives. Frontiers in Genome Editing. 2(25).
    Wu S., Zhang B., Keyhaninejad N., Rodríguez G. R., Kim H. J., Chakrabarti M., Illa-Berenguer E., Taitano N. K., Gonzalo M. J., Díaz A., Pan Y., Leisner C. P., Halterman D., Buell C. R., Weng Y., Jansky S. H., van Eck H., Willemsen J., Monforte A. J., Meulia T. & van der Knaap E. (2018). A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications. 9(1): 4734.
    Xia X., Cheng X., Li R., Yao J., Li Z. & Cheng Y. (2021). Advances in application of genome editing in tomato and recent development of genome editing technology. Theoretical and Applied Genetics. 10.1007/s00122-021-03874-3.
    Xu C., Liberatore K. L., MacAlister C. A., Huang Z., Chu Y.-H., Jiang K., Brooks C., Ogawa-Ohnishi M., Xiong G., Pauly M., Van Eck J., Matsubayashi Y., van der Knaap E. & Lippman Z. B. (2015). A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nature Genetics. 47(7): 784-792.
    Xu C., Park S. J., Van Eck J. & Lippman Z. B. (2016). Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes & Development. 30(18): 2048-2061.
    Xu H., Zhang L., Zhang K. & Ran Y. (2020). Progresses, challenges, and prospects of genome editing in soybean (Glycine max). Frontiers in Plant Science. 11: 571138-571138.
    Ye J., Wang X., Hu T., Zhang F., Wang B., Li C., Yang T., Li H., Lu Y., Giovannoni J. J., Zhang Y. & Ye Z. (2017). An InDel in the Promoter of Al-ACTIVATED MALATE TRANSPORTER9 Selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell. 29(9): 2249-2268.
    Yu Q.-h., Wang B., Li N., Tang Y., Yang S., Yang T., Xu J., Guo C., Yan P., Wang Q. & Asmutola P. (2017). CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports. 7(1): 11874.
    Yuste-Lisbona F. J., Fernandez-Lozano A., Pineda B., Bretones S., Ortiz-Atienza A., Garcia-Sogo B., Muller N. A., Angosto T., Capel J., Moreno V., Jimenez-Gomez J. M. & Lozano R. (2020). ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences of the United States of America. 117(14): 8187-8195.
    Zhu L. & Qian Q. (2020). Gain-of-function mutations: key tools for modifying or designing novel proteins in plant molecular engineering. Journal of Experimental Botany. 71(4): 1203-1205.