ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Short communication
Early diagenetic transformation stages revealed by micro-analytical studies of shelly phosphorites, Rakvere region; pp. 34–37
PDF | https://doi.org/10.3176/earth.2023.12

Authors
Sophie Graul, Toivo Kallaste, Marko Moilanen, Mawo Ndiaye, Rutt Hints
Abstract

Furongian–Tremadocian phosphorites of Estonia are sandstone rich in biogenic apatite, represented by brachiopod detritus. The study focuses on the mineralogical and micro-analytical characterisation of phosphorites from the Aseri, Toolse, and Kabala deposits based on FE-SEM and EPMA analyses. The shell fragments are composed of alternating compact and porous laminae, but with considerably poor preservation of pristine textures, superseded by the formation of authigenic CAF-apatite during the early diagenesis. In all settings, the shells showed preferential uptake of Sr into the porous cryptocrystalline laminae. The altered areas are composed of massive apatite crystallites with Mn-enriched layers. They are frequently covered with pyrite, indicating progressive recrystallisation under the influence of interstitial fluids and fluctuations in redox gradients in coastal environments.

References

Artyushkov, E. V., Lindström, M. and Popov, L. E. 2000. Relative sea-level changes in Baltoscandia in the Cambrian and early Ordovician: the predominance of tectonic factors and the absence of large scale eustatic fluctuations. Tectonophysics320(3–4), 375–407. 
https://doi.org/10.1016/S0040-1951(00)00038-X

Baturin, G. N. and Ilyin, A. V. 2013. Comparative geochemistry of shell phosphorites and dictyonema shales of the Baltic. Geochemistry International51(1), 23–32. 
https://doi.org/10.1134/S0016702913010023

Cusack, M., Williams, A. and Buckman, J. 1999. Chemico-structural evolution of linguloid brachiopod shells. Palaeontology42(5), 799–940. 
https://doi.org/10.1111/1475-4983.00098

Ferretti, A., Medici, L., Savioli, M., Mascia, M. T. and Malferrari, D. 2021. Dead, fossil or alive: Bioapatite diagenesis and fossilization. Palaeogeography, Palaeoclimatology, Palaeoecology579, 110608. 
https://doi.org/10.1016/j.palaeo.2021.110608

Godet, A. and Föllmi, K. B. 2021. Sedimentary phosphate deposits. In Encyclopedia of Geology. Elsevier, 922–930.
https://doi.org/10.1016/B978-0-08-102908-4.00045-X

Graul, S., Kallaste, T., Pajusaar, S., Urston, K., Gregor, A., Moilanen, M. et al. 2023 (in press). REE+Y distribution in Tremadocian shelly phosphorites (Toolse, Estonia): multi-stages enrichment in shallow marine sediments during early diagenesis. SSRN. 
https://doi.org/10.2139/ssrn.4382862

Heinsalu, H. and Viira, V. 1997. Pakerort Stage. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 52–58.

Holmer, L. E. 1989. Middle Ordovician phosphatic inarticulate brachiopods from Västergötland and Dalarna, Sweden. Fossils and Strata26

Kaljo, D., Heinsalu, H., Mens, K., Puura, I. and Viira, V. 1988. Cambrian–Ordovician Boundary beds at Tõnismägi, Tallinn, North Estonia. Geological Magazine125(4), 457–463. 
https://doi.org/10.1017/S001675680001308X

Kirsimäe, K., Jøgensen, P. and Kalm, V. 1999. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals34(1), 151–163. 
https://doi.org/10.1180/000985599546000

Lang, L., Kirsimäe, K. and Vahur, S. 2015. Diagenetic fate of bioapatite in linguliform brachiopods: multiple apatite phases in shells of Cambrian lingulate brachiopod Ungula ingrica (Eichwald). Lethaia49(1), 13–27. 
https://doi.org/10.1111/let.12127

Lécuyer, C., Grandjean, P., Barrat, J.-A., Nolvak, J., Emig, C., Paris, F. et al. 1998. δ18O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochimica et Cosmochimica Acta62(14), 2429–2436. 
https://doi.org/10.1016/S0016-7037(98)00170-7

Lowenstam, H. and Weiner, S. 1989. On Biomineralization. Oxford University Press, New York, London.
https://doi.org/10.1093/oso/9780195049770.001.0001

Lumiste, K., Lang, L., Paiste, P., Lepland, A. and Kirsimäe, K. 2021. Heterogeneous REE+Y distribution in Early Paleozoic shelly phosphorites: Implications for enrichment mechanisms. Chemical Geology586, 120590. 
https://doi.org/10.1016/j.chemgeo.2021.120590

Martin, E. E. and Scher, H. D. 2004. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news. Earth and Planetary Science Letters220(1–2), 25–39. 
https://doi.org/10.1016/S0012-821X(04)00030-5

McLennan, S. M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4). 
https://doi.org/10.1029/2000GC000109

Nemliher, J. 2006. A new type of shell structure in a phosphatic brachiopod from the Cambrian of Estonia. Proceedings of the Estonian Academy of Sciences. Geology, 55(4), 259–268. 
https://doi.org/10.3176/geol.2006.4.01

Nemliher, J. and Puura, I. 1996. Upper Cambrian basal conglomerate of the Kallavere Formation on the Pakri peninsula, NW Estonia. Proceedings of the Estonian Academy of Sciences45(1), 1–8. 
https://doi.org/10.3176/geol.1996.1.01

Nemliher, J., Kurvits, T., Kallaste, T. and Puura, I. 2004. Apatite varieties in the shell of the Cambrian lingulate brachiopod Obulus apollinis Eichwald. Proceedings of the Estonian Academy of Sciences53(4), 246–256. 
https://doi.org/10.3176/geol.2004.4.02

Nielsen, A. T. and Schovsbo, N. H. 2011. The Lower Cambrian of Scandinavia: Depositional environment, sequence stratigraphy and palaeogeography. Earth-Science Reviews107(3–4), 207–310. 
https://doi.org/10.1016/j.earscirev.2010.12.004

Popov, L. E., Alvaro, J.-J., Holmer, L. E., Bauert, H., Pour, M. G., Dronov, A. V. et al. 2019. Glendonite occurrences in the Tremadocian of Baltica: first Early Palaeozoic evidence of massive ikaite precipitation at temperate latitudes. Scientific Reports9, 7205. 
https://doi.org/10.1038/s41598-019-43707-4

Ptáček, P. 2016. Apatites and their Synthetic Analogues: Synthesis, Structure, Properties and Applications. IntechOpen.
https://doi.org/10.5772/59882

Trappe, J. 1998. Phanerozoic Phosphorite Depositional Systems: A Dynamic Model for a Sedimentary Resource System. Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/BFb0009670

Trueman, C. N. and Tuross, N. 2002. Trace element in recent and fossil bone apatite. Reviews in Mineralogy and Geochemistry48(1), 489–521. 
https://doi.org/10.2138/rmg.2002.48.13

Veiderma, M., Tõnsuaadu, K., Knubovets, R. and Peld, M. 2005. Impact of anionic substitutions on apatite structure and properties. Journal of Organometallic Chemistry690(10), 2638–2643. 
https://doi.org/10.1016/j.jorganchem.2004.11.022

Vinn, O., Holmer, L. E., Wilson, M., Isakar, M. and Toom, U. 2021. Possible drill holes and pseudoborings in obolid shells from the Cambrian/Ordovician boundary beds of Estonia and the uppermost Cambrian of NW Russia. Historical Biology33(12), 3579–3584. 
https://doi.org/10.1080/08912963.2021.1878355

Back to Issue