Elsevier

Journal of Dairy Science

Volume 105, Issue 3, March 2022, Pages 2108-2118
Journal of Dairy Science

Research
A novel electrochemical immunosensor based on Fe3O4@graphene nanocomposite modified glassy carbon electrode for rapid detection of Salmonella in milk

https://doi.org/10.3168/jds.2021-21121Get rights and content
Under a Creative Commons license
open access

ABSTRACT

Foods contaminated by foodborne pathogens have always been a great threat to human life. Herein, we constructed an electrochemical immunosensor for Salmonella detection by using a Fe3O4@graphene modified electrode. Because of the excellent electrical conductivity and mechanical stability of graphene and the large specific surface area of Fe3O4, the Fe3O4@graphene nanocomposite exhibits an excellent electrical signal, which greatly increased the sensitivity of the immunosensor. Gold nanoparticles were deposited on Fe3O4@graphene nanocomposite by electrochemical technology for the immobilization of the antibody. Cyclic voltammetry was selected to electrochemically characterize the construction process of immunosensors. The microstructure and morphology of related nanocomposites were analyzed by scanning electron microscopy. Under optimized experimental conditions, a good linear relationship was achieved in the Salmonella concentration range of 2.4 × 102 to 2.4 × 107 cfu/mL, and the limit of detection of the immunosensor was 2.4 × 102 cfu/mL. Additionally, the constructed immunosensor exhibited acceptable selectivity, reproducibility, and stability and provides a new reference for detecting pathogenic bacteria in milk.

Key words

Salmonella
milk
immunosensor
Fe3O4@graphene nanocomposite
gold nanoparticles

Cited by (0)