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Abstract. The paper describes the use of various types of mechanical filter models, which
are used for the analysis of the processes of formation and compaction of the construction/concrete
mixtures of building/concrete mixtures by means of vibrating fields. The values of resonant
frequencies and equivalent masses for different resonators modeling the propagation in the latter of
vibrating-wave formations have been established. The analysis of the influence of a vibrating field on
the processes of formation and compaction of concrete/concrete mixtures in this study is based on the
methods of mathematical physics, classical variation calculus, physics of oscillations and waves and
methodology of solution of ordinary differential equations and partial differential equations. The
conditions and main integral characteristics of resonance phenomena, the possibility of occurrence of
which is conditioned by: 1) the geometry of the initial boundary-edge problem (it is The so-called
"geometric resonances" of the considered system with distributed parameters simulating the mixture
to be processed); 2) the working rheological model of the mixture involved in the study (these are the
so-called "rheological resonances").

The approach developed and scientifically substantiated in this work allows us to establish the
main parameters and opportunities for the use of energy-saving modes of operation of vibration
systems intended for the formation and vibration compaction of the above mixtures. The results
obtained in the work The results obtained can be further used to clarify and
Improvement of existing engineering methods of calculation of vibration systems for the formation
and compaction of concrete/concrete mixtures in order to optimize the operating modes of their
functioning both at the design stage and in the modes of real operation.

Keywords: modeling, mechanical filters, vibration resonators, analysis, formation processes,
compaction, construction and concrete mixtures, vibration field, resonances, equivalent masses.

Problem formulation. Mechanical circuit diagrams are quite often used in modeling the
compaction and forming processes of concrete/construction mixtures. In particular, equivalent
circuits simplify the calculation process or make the operation of mechanical filters more
understandable [1]. Say, the distributed mechanical circuit of a piezoceramic transducer operating on
flexural vibrations is often transformed in scientific research into a mechanical circuit with
concentrated elements formed by springs and masses. The mechanical circuit is then converted into
its electrical counterpart. The conversion from a plate resonator to a system of masses and springs
simplifies the circuit, but this conversion is not exact. A plate resonator has an infinite number of
natural frequencies, while the number of resonances of an equivalent circuit with concentrated
parameters is determined by the number of springs, masses, and the way they are connected. Since
mechanical filters are devices with a narrow frequency bandwidth, this fact does not cause large
errors, and equivalent circuits with concentrated elements are very useful.
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The second type of equivalent circuits are electrical analogs of mechanical circuits. This
equivalence promotes understanding and facilitates the analysis of not only the converter but also the
entire filter. In the initial stage of system design, the filter user may deal with the mechanical filter as
if it were a LC — filter, or more generally, a resonator stage circuit. Let us first consider mechanical
schematic diagrams and the very subject of analogies and equivalent circuits.

Both mechanical circuit diagrams and mechanical analogies may be used to describe physical
systems. Mechanical circuit diagrams may have concentrated elements, such as masses and springs,
or capacitances and inductances, or transmission lines (elements with common parameters), which
are characterized by wave impedance and propagation constant (wave propagation).

Mathematical modeling of such systems can be expressed through differential equations or
equations of change of state. In all cases, the starting point is a physical system, which in turn is
expressed by a kinematic scheme [1].

A kinematic diagram is simply a representation in the form of a drawing of the main features of
a real device. It is most often used to describe a mechanical device and acts as a bridge between the
real device and its mechanical circuit diagram.

For example, the simplest kinematic diagram of a mechanical single resonance filter has the
form of a mass M, which is connected to a stiffness spring K, and to this mass is connected in parallel
damping element D.

The resonant frequency of such a system is determined from the relation:

Q:2nf:«/K/M : 1)
where: Q is cyclical, f — linear frequency.

The equivalent mass of such a system is the apparent mass of the resonator measured at a point
on the resonator and in a particular direction. In other words, we have replaced the resonator with a
spring-mass combination that has the same resistance near the resonant frequency. The equation of

. dx
state for the resonator through the force is F and velocity X = E , Where X —displacement of mass
M in space, t —is time, written as:
. . K . -
F=JoMx+| — |- X+Dx, J©=-1. )
Jo

The differential equation (essentially a Proportional-Integral-Differential (PID) controller
equation for force F at its harmonic variation in time) will have the form:

Fsinoot:M%+K.[>'(dt+D>'<. 3)
dt
Proceeding from equation (2), after passing to complex variables (find X(t) =X, exp( j(ot) ),

one has:

. F(t

X(t) = (2 - ()

(jooM +—+ Dj
[

Resonance value X, will be under the condition of the minimum value of the denominator of
formula (4), namely, when:

joM +j£m:0<:>mreS:Qresz\/%; X (t)=F(t)/D. (5)

Consequently, such a simple model of the mechanical system exhibits resonant properties and
has a resonant frequency ®,,, =€2,.. Note that the circuit diagram (for such a kinematic scheme)
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turns into three in parallel: mass M, stiffness K, and damping element D. In the electromechanical
analogy, the equivalent of velocity becomes voltage V and force becomes current 1. Therefore,
writing (2) and (3) in electrical quantities, we obtain:

| = joCV +(¥ joL )V +GV ; (6)
|sin@t:cd—v+1jwt+ev, (7)
dt L

where: G is permeability, L — inductiveness, C — capacitance. Therefore, the following equivalence of
mechanical and electrical parameters arises: M <>C; D<>G; K< L™,

Quite often in the literature, researchers also use longitudinal oscillation resonator models.

In the case when one of the resonator dimensions becomes much larger than the other two, the
vibration types are simplified and become ideal types of longitudinal compression-extension
vibrations. The wave equation for such vibrations of rods and strips have second order with respect to

the length coordinate, i.e.:
E) é°u o
o) o o ©

where: U(X,t) — moving the section point with the coordinate X, at a point in time t, p —
material density, E — is the elasticity modulus of this material. After introducing complex variables,
we consider that u= A-exp(iat), where i=-1, ® — is the cyclic frequency of oscillations. Then

from (8) we have:
E) o°u
— | — =—0u. (9)
p ) OX
We find the solution of (9) in the form:
u(x)= Asinkx + Bcoskx, (10)
where: X — distance from the rod end, K — is the wave propagation constant in the rod. We consider

that the ends of the rod oscillate freely, then we have for the constants undefined in (10) A and B
two boundary conditions if the rod has finite length | :

(LI ; u =0. (11)
OX x=0 OX x=I
Substituting (10) into the first limiting condition, we obtain:
A=0. (12)
Therefore,
u(x)=Bcoskx. (13)
From the second boundary condition (11) we have:
sin(kl)=0. (14)
Equation (14) is the resulting frequency equation and has the following roots:
k,=nm, n=1,2,3,..(neN). (15)

Next, we establish the relationship between and frequency by substituting the solution (13) into
the wave equation (9) and differentiating the left part by X. After contracting the value cos(kx)
one obtains:

k=w-p/E, (16)

that is, we obtain the so-called dispersion equation of the resonator. Note that the phase
velocity of the waveforms:
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e

Vphase = Vp = 9 = (_j ) (17)

k \p
and the group velocity of wave formation:
12

d E

Vgroup = Vg = - = (_j ) (18)
dk P

independent of frequency w, and therefore the longitudinal type of oscillations is nondispersive.
Then we substitute the values K from (15) into the dispersion equation (16); this gives us a relation
for determining the resonant frequencies of the rod:

O N)E
fo=on (zJ M),neN. (19)

For each mode of wave formations in the rod by substituting the value of Kk from (15) into
equation (13) the distribution of displacements can be found u (X) The result is:

u(x)= Bcos(n“%). (20)

The above approaches known in the scientific literature are used in this study.

Analyzing the study's publications. Rheological models of media to which
concrete/construction mixtures belong are considered in [2-13], and the idea of using models of
mechanical filters to analyze wave processes and determine the integral characteristics of mixtures
(concrete or construction) is presented in [1]. However, the authors of these works practically do not
investigate exactly the resonance properties of their proposed rheological models of media that
support wave formation of various types (in particular, longitudinal waves). Therefore, this particular
study is devoted to the problem of determining possible resonance phenomena (geometric and
rheological) and the conditions for their occurrence in media that are treated by vibratory fields.
Concrete/construction mixtures belong to such media.

The aim of the work is to establish the conditions and characteristics of resonances that are
possible in concrete/construction mixtures when studying the processes of their vibration compaction
and formation within the framework of classical rheological models of visco-elastic-plastic media in
the presence of longitudinal wave formation in the latter. To achieve the goal of this work, the model
of a rod supporting longitudinal wave formation is used.

Research Methodology. The following methods are chosen as research techniques: 1) models
and mathematical apparatus of solid deformed body mechanics; 2) methods of solving differential
equations describing linear wave processes in visco-elastic deformed bodies (in the presence of various
dissipation mechanisms); 3) methods of mathematical physics; 4) methods and models of linear
acoustics used in the analysis of impedance (including resonance) properties of media supporting
waves of different physical nature; 5) discrete-continuum models and methods of analyzing linearly
deformed media (including resonance) properties of media supporting waves of different physical
nature; 6) discrete-continuum models and methods for analyzing linearly deformed media.

Outlining the main content of the study. Let us consider wave formation in a rod of finite
length, when it is necessary to take into account dissipative processes that occur in this rod. It should
be noted that the rod model is popular in studies of vibration compaction of concrete mixtures.

1. Investigation of absolute (in time) stability of wave formation in the rod.

Proceeding from (16), we feed the dispersion relation as follows:

~\Y2
® E - - ~ i
—=|=| ,0=0'+i0",i*=-1 E=E'+iE", (21)
k (p

where: @' — characterizes the frequency of wave propagation in the rod material, ®" —
characterizes the attenuation of this wave formation in time t (specifically, (") = 744, Where 44
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— time period for which the amplitude of wave formation decays in the € -times), E' — characterizes
the elastic properties of the rod (its material), E” — its dissipative properties, with K we shall
hereinafter understand the expression K., ne N (15). For the wave formation to be absolutely

stable, i.e., not increasing with time, it is necessary that the ®” > 0. (It should be noted that, '
describes the so-called frequency of (cyclic) filling of wave formation, and the true frequency of
wave formation € is expressed as follows:

1/2

! 2 4 2
Q={(e) - (")}, (22)
that is, in fact, ' characterizes the frequency (cyclic) of wave propagation in the rod (in its
material) in the absence of dissipative processes — that is, we mean a rod of ideal material (in which

there is no dissipation).
Relationship (21) can be represented as follows:

P PEr—— %
(co+loo):(E +|EJ | 23
k p

n

The solution of this equation in the complex plane allows us to write the following (for each n -
mode of wave formation):

, 12 1/2
P 2 N2 | 4 r o 2
o, = (EKLJ J{E_] LS I S S RO (24)
p 2 yo, 4 p 2
2\? 2 4 Y2 2 v
0)::: Ek_” + E_ k_” _Ek_n , neN. (25)
p 2 p 4 p 2
Expressions (24), (25) taking into account (15) can be presented as follows:
!’ 2 4 2 1/2\1/2
o e [(EY (B
0, =—=-1—+ , heN, (26)
V2l | p P
12 N Y2

, [(E')2+(E")2] E
SNGT p p

“

For the value Q2 we have the following expression (exact formula):

nt | E’ v

o ="TIEL hen. (28)
I Lp

We further consider that the deformation £(t) and o(t) — stresses related to each other by

the linear Hooke's law, which takes into account dissipative processes in the rod material:
2

o=(E'+iE")-& oo =g-y(E') +(E") (29)

where: (GO , 80) — stress and strain amplitudes, provided that G(t) and change over time as

> ,neN. (27)

follows: s(t) =g, Sinot; G(t) = GOSin((Dt + (p); tgp = (%j (30)
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For the time variations given by (30) € and & let us calculate the work done by the wave
formation/vibrations in the rod material during the time t (per unit area of the cross section of therod S ):

t t t
A= _[ods = WG,g, -{coscp-_[(sincot -cosot )dt +sin(p-jsin2cotdt} =
0 0 0

(31)
=U + Dt,
where: U — fully recoverable work of elastic forces, which can be written as follows:
U =04, -[O,SCOS(p-sinzw +0,25sin@-sin Z\V], ¢ =ot; (32)
and D the following relationship can be found:
D =0,5004¢, -sing. (33)
In essence Dt is irreversible/unrecoverable work per unit time.
The power of elastic forces can be found as follows:
du i
s =0,500¢, -sin (2wt +¢). (34)

From (34) it can be seen that the maximum values of the elastic force power reach at the
moments of time t”, which can be found from the ratio:

203t*+q):g+2ﬁn, A=012, ... (35)
For t* one has:
[d_Uj =0,5m00¢,. (36)
dt J, ..
Maximum value U is achieved under the condition:
2y =mt—Q. (37)
In this case we have:
1
U = 7500 (1+cosg). (38)

If we introduce the concept of inverse goodness of fit ( Qfl) as the ratio of the energy that is
dissipated during the time when the phase of wave formation/vibration changes by 1 radian to the

maximum value of free energy in the oscillation cycle (period of this cycle T = 21 O)), and take into
account that the change ' by one radian occurs in the time ( %) ), then you can have it:
D 0,500,¢,SIN @ 2sing

Q= - - —2.tg2.  (39)
OU o w-icoso-(1+008(p) (1+cose) 2

Since tgop = EyE’ , with (39) one has:

14 ! 2
Q_l=—2-(5j+2- (%j +1. (40)

Expression, for Q*1 (40) is exact, but ¢ << 1 one can write:
1 2sing _2sing
1+coso 2

"

:Sin(pztg(p=E. (41)
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D gains maximum value when:
Sin(p=1:>q):g. (42)

Then:
Q*'=2, (43)
and: E" >> E’.
Also, it follows from relation (42) that: E" >> E’. (44)
Then for €2 one gets the equality (28), which will be accurate for the resonant frequency of

the waveformation/vibration propagating in the rod material. In this sense, such a frequency of wave
formation can be called the resonant frequency, since it is at this frequency that the maximum energy

absorption by the rod material from the existing wave formations in it occurs.For ® and ! one
can obtain:

12
nm "
®, = O = -{E } : (45)
J2 1 p
So, the wave formation in the rod, which leads to the maximum absorption by its material of the
energy of this wave formation, has all the features of a dissipative wave, with a "resonant” (in this

sense of maximum absorption) frequency (28), the filling frequency of the envelope of this wave @,

(45) and amplitude, which decreases in time (envelope wave) according to the law proportional to
exp(—ap -t) . Moreover, as the mode number increases, this damping of the envelope wave increases.

Practically, only the first and second modes are excited, since all higher modes (in terms of the mode

number N) will quickly decay. Therefore, the conclusion is as follows: in a rod of finite length |
only a few dissipative waveforms are excited, which have the following parameters:

Y2 12
n=123 O =%, E L@ RO~ {E” } . (46)
1 \/_I P

Models of elastic-plastic material (rod) in the theory of internal friction are considered in detail

by the author [2], where the values of the E" and E” for many such models. The vast majority of
works on amplitude-dependent friction, particularly in metals, are devoted to the study of harmonic or
near-harmonic deformation laws (such as the one discussed above). This applies equally to both
experimental and theoretical works. The main reason preventing the theoretical study of nonharmonic
motions relevant for applied problems is the lack of an analytical expression for the external (forced)
force at an arbitrary deformation law in time. Note that the available expressions of this force [2, 3]
refer exclusively to the harmonic law of change of deformation, and it is not clear how to define or
remake these dependencies so that they appear to be valid under an arbitrary law. At the same time,
the ideas necessary for this purpose have been expressed in the literature.

In 1938, N.N. Davydenkov on the basis of the experimental works carried out at that time and at
that level put forward a hypothesis according to which internal friction at significant material stresses
is an effect of microplastic deformations. Even a direct indication that internal friction should be
studied using the equations of Mises-Henky plasticity theory is known. However, this rational idea
was realized by N.N. Davydenkov only for the case of cyclic deformation under uniaxial stress state
and with a partial view of the material loading curve. As a result, the well-known formula of the
hysteresis loop was proposed, according to which the energy losses in the material per oscillation
cycle depend according to the step law on the amplitude of deformation or stress.

This view of the main role of the theory of plasticity for the applied theory of energy dissipation
is explicitly or implicitly shared by many modern authors. Thus, the formula of N.N. Davydenkov
and its generalization are intensively used in the studies of G.S. Pisarenko and other members of the
Kiev school. The same formula was the basis for the creation of simpler applied theories of internal
friction, of which the theory of J.G. Panovka is the most widespread.
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The direct use of the equations of plasticity theory to analyze internal friction under uniaxial
stress state and again for harmonic deformation was carried out by E.S. Sorokin in 1960 [2].

Thus, the most popular formulas of the theory of energy dissipation under intense stresses are
based on the ideas of the theory of plasticity [2].

The fruitfulness of this approach also manifests itself in the fact that it is possible to
unambiguously solve one more important problem for the applied theory of energy dissipation —
generalization to the case of a complex stress state. The fact that this problem is relevant for the
theory of energy dissipation is evidenced by direct indications in the book [2] and numerous ways of
its solution exactly for the case of harmonic oscillations. In the literature it was suggested to carry out
this generalization by methods of the theory of linear viscoelasticity [3], with the help of the
superposition principle, using the hypothesis that the energy dissipation in a unit volume per
oscillation cycle depends on the amplitude value of the potential energy density and, finally, by
methods of the theory of plasticity . Only the last of these methods can be correctly generalized to
nonharmonic motions [2, 3].

Let us dwell on the question of choosing the variant of plasticity theory that is suitable for the
description of internal friction. The point of view of N.N. Davydenkov was mentioned above,
according to which the amplitude-dependent internal friction represents the effect of microplastic
deformations. Microplastic deformations are understood as such plastic deformations that occur at
any stress level, including stresses less than the macroscopic yield strength of the material. From this
point of view, the application of the theory of microplastic deformations by V.V. Novozhilov and Yu.
Novozhilov and Y.l. Kadashevich, where, for example, the simplest of the microplasticity theories —
the theory of elastic-plastic bodies — is systematically used, and the general theory of plasticity with
linear hardening (which can be used to describe the cyclic deformation of concrete/construction
mixtures) is considered in the works of this author.

In the following we will use expressions for E” and E”, which follow, in particular, from the
consideration of the uniaxial stressed state of the material in the framework of the models of A.Y.
Ishlinsky, E.S. Sorokin [2], G.S. Pisarenko, and Y.G. Panovka.

For the main parameters of wave formations arising in the rod material when dissipation

processes are taken into account (f)n, @, @ (46))and (Q, (28)), (@ (26),®" (27)), one should
determine E" and E” — parameters of the complex modulus of elasticity (at known E — Young's
modulus of the material, its density p geometric length of the rod | ) for different models of

visco-elastic-plastic materials. We have the following results:
a) A.Y. Ishlinsky's model:

E'=E(1-ra"); E"=Ega“, (47)
where notations are introduced:
2H o aH a+l1 3 4
r=———-n%g=—-n"-Bl —,—, [,n=—, (48)
(2+0a) 2 2 "2 n
a — amplitude of cyclic (harmonic) deformation of materia, B — Euler's beta

function, ( H, OL) > 0 — some positive constants describing the distribution function of defects in the
region of their small values:
F(h)=Hh?, (49)
where: h — dimensionless yield strength of the rod material;
b) E.S. Sorokin's model [2]:

2
E':E-w E'-E.— 7V (50)

L+r214) L+s218)
where: y = y(a) — dissipation parameter (dissipation coefficient, characterizing the ratio of
energy quantity AW , which is dissipated in the rod material during its oscillation cycle, to W — of
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all elastic energy stored in the rod material during the oscillation cycle, i.e. y :AW/\N ). As a
general rule 0 <y <<1, therefore we can write:
E'~ E(1—y2/2), E"~Ey. (51)
c) G.S. Pisarenko's model:
{E':E-(l—r-a“), E"= E-g-a“}<:> E’:E—é-E”;

52
r_n2?" [G(n+1/2)F (2)

g (n-1) GE@2n+1)
Note that in contrast to the model of A.Y. Ishlinsky, in the model of G.S. Pisarenko another

r
value of — . In (52) G (z) — gamma function of the argument Z.

In A.Y. Ishlinsky's model we have:

1 3\
£=4-[a(2+a)-8(&,—ﬂ . (53)
g 2 2
d) Y.G. Panovka's model:

E'=E, E"=Ega“. (54)
In [3] it is shown that the theories of G.S. Pisarenko, Y.G. Panovk and A.Yu. Ishlinsky lead to

practically the same results, and the existing differences in the formulas for the E' and E” caused
by different methods of averaging and linearization.

2. Investigation of convective (in space) stability of wave formations in a rod. We consider (in the
field of complex quantities) the deformation, which propagates in the rod, as a quantity proportional to

exp {i ((Dt — Enx)} , Where En = kr: + ikr': ,0X — axis along which the deformation wave propagates

in the rod (thus ® — purely real value). For this deformation wave to be convectively stable, i.e., not
growing in space along the propagation axis, the condition must be fulfilled:

k"<O. (55)
To determine K’ and K it is necessary to solve the dispersion equation in the complex plane:
N2
® E'+iIE"
’ n' P ! (56)
k' +ik’ p

Physical meaning K/ is that this quantity characterizes the wave vector of wave formation

propagating in the rod material, and (k:)_l — at what length along the axis of the rod the amplitude

Ox of wave formation in space decreases to e — times.
For convectively stable wave formation we have:
1/2

e ] S GG

1/2
2
" CO !/ " !
k! =— 2P -[\/(E)2+(E)2—E} . (58)
2 (E) +(E") |
3. Equivalent mass and the method of its calculation.
The equivalent mass (of a resonator) is defined as the equivalent distributed parameter of a rod
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or plate, concentrated at a given point and determined for a particular natural frequency. In other
words, we replace the equivalent transmission line circuit described above with a mass and spring that
are resonant at frequency.

One method of finding the equivalent mass of a resonator that oscillates in the longitudinal direction
is to calculate the kinetic energy, which is the product of the mass by half the square of the velocity in a
given direction and at a given point [1]. This is a consequence of the fact that the kinetic energy of the rod
IS invariant, that is, the kinetic energy is independent of the point or direction of reference chosen to
calculate the equivalent mass. Thus, it is possible to equate the Kinetic energy in a spring-mass system to

that of the rod resonator. From equation (13) and equation V, = du (x) / dt gives:
[
1 Mequx V2 :1.'[(VO -coskpX)? - p- Sdx, (59)
2 2 9

where: Mgqyx — equivalent mass in point X, linked to velocity V, in the direction of axis X.

V, is the velocity at the point X=0, p — core material density, S — is the cross-sectional area.
Therefore, the equivalent mass reduced to the ends of the rod is equal to:

|
;-p-S-VOZ -E[(cos2 knx)jx

M eqv0,l = 1 5 | (60)
=V
2
and after substitutionk_ = nrt/l in (60) and integration:
Mequo = 2-1-S/2=Mg /2. (61)

Consequently, the equivalent mass given to the end of a longitudinally vibrating resonator in
the direction of the plate or rod axis is simply half its static mass (Mg =p-S-1).

Example. We solve the problem of finding the fundamental resonance frequency and
equivalent mass of a longitudinal oscillating resonator with length,

| =(..3)m, S =0,4m?, p=2-10%kg/m°.
Table 1 shows the values of the first resonant frequency, which is expressed by relation (19), for
different grades of concrete (M200...M800), as well as the value of the Meqo, for different .

Table 1 — Value of the first resonant frequency f,, Hz and Meqvo,i » K3,
for different grades of concrete and different resonator lengths |, m

Type E N /m2 —Pa I ’m;/Mequ,I ) kg
of concrete | =1m; 400 kg | =2m; 800 kg | =3m; 1200 kg

M200 2-107 50 Hz 25 Hz 17 Hz
M300 3-10’ 61 Hz 30.5 Hz 20.3 Hz
M400 4-10’ 70.7 Hz 35.4 Hz 23.6 Hz
M500 5-10° 79.1 Hz 39.6 Hz 26.4 Hz
M600 6-10" 86.6 Hz 43.3 Hz 28.9 Hz
M700 7-10° 93.5 Hz 46.8 Hz 31.2 Hz
M800 8107 100 Hz 50 Hz 33 Hz

Formula (19) allows us to state that for the longitudinal wave resonators we have resonances at
frequencies corresponding to the half-wave resonator, since wavelength 2, and the length of the

resonator | are related by the relations:
ﬂw(n) :2_71': 27 2l n E (62)

=—, n:—-VW, VW: ,

ky (n-z/l) n 21 P
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where: v,, — propagation velocity of the longitudinal wave in the resonator. Knowing f_ with (62)

(they correspond to the conditions of excitation of standing waves and "resonances™ of the half-wave
resonator), it is possible to create conditions under which effectively, at these frequencies

(n=1,2,3,...), where an integer number of half-waves is inserted, will be absorbed by the resonator
material the energy from wave formation, which propagates in it. Let us finally consider the solution
for the case of a non-thin rod. First we define the effective radius Iy of a rod resonator whose cross
section is rectangular with sides: b — width, h — height:

bh

nri =bh < r, =, [—. (63)
n
Consider the case when the radius ry >0.1-4,(", that is:
2l 0,21
rs >01.-—=——,n=123,... (64)
n n

In this case, the rod cannot be considered thin and a correction factor must be introduced into
the wave equation. Relay [2] and Maison [3] showed that the displacement along the axis of the rod is
expressed in the form:

u, =2z(r)-sin(k,x), (65)
where z(r) — distance function r from the axis of the rod. At resonant frequencies f,

constant dissemination K = nn/l ,neN,and ﬂw(”) is found from (62). Taking into account only

the main correction, which leaves only the compression-expansion inertia in the direction
perpendicular to the rod axis, the frequency equation takes the following form:

2

n E numr,

=D B (66)
21 \p 2

where: u —Poisson's ratio. The frequency equation transforms into the thin rod equation (equation (19))

when r; —0 . Meson showed that when the rod diameter is very large. d

(defs =21 >>0.1-4,,™) the higher order terms should be included in equation (66). From the point of

view of calculating the equivalent mass, the effect of transverse inertia (i.e., the effect of taking into
account the kinetic energy associated with motion in the direction perpendicular to the axis of the rod) is
to increase this mass with respect to the value determined by the relation (61). The reason for the
increase is as follows: the kinetic energy associated with oscillations along the axis is slightly less than
the total kinetic energy of the rod (the numerator of relation (60), which determines the equivalent mass).
Accordingly, the ratio of the total energy to the term in the denominator, which consists of the square of
the velocity in the direction of the axis, increases. On the contrary, the equivalent mass in the direction
perpendicular to the axis decreases when the ratio of the diameter to the term in the denominator is

(d. ) to the length increases (assuming that the static mass remains constant).

Let us consider further the influence of boundary conditions on the formation of the spectrum of
natural frequencies of the resonator.

A. Both ends of the rod (X = 0; X =) free of stress:

o _au
ox x=0 ox x=I
B. Both ends of the rod (X =0; X =1) are fixed:

=0<3fn=%‘vw:£‘ E, neN. (67)

n n |E
U|X:0=U|X:|=0<:>fn=§'Vw=—' —, neN. (68)
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C. One end of the rod is fixed and the other end is stress free:

ou (2n-1) (2n-1) |E

= — :0 f = . = . —_—

Yo =5 7O =T W

Consequently, the first two types of boundary conditions (67), (68) lead to the frequency
(eigenfrequency) spectrum of the half-wave resonator, and conditions (69) lead to the frequency

(eigenfrequency) spectrum of the quarter-wave resonator. f_, except for the geometric dimensions

, neN. (69)

of the resonator (I,r, ) is also determined by the density of the rod material (o) and its elastic

properties (Young's modulus — E ). Note that Meqvo,i remains the same regardless of the boundary

conditions and is described by (61).
4. Resonance properties of linear viscoelastic bodies.
4.1. Maxwell's viscoelastic fluid.
Defining dependence o, (&, ) gives:
b= Gyt oy, iy =deldt, Gy =doy (70)
Ec v
where: Eg — Young’s modulus of elasticity, 1, — coefficient of (bulk) viscosity.

With (o, &)~ exp(iat), i2=-1 from (70) one obtains:

2 .
ingzi'ia)O'X-i-i'O'X@O'X: (a) ZIEG)"?X 5+ I'(Z)/UV)'&‘X 5 (71)
Ec My @/ny ) +(@lEg)  Un ) +(0/Eg)
Let us introduce the complex modulus of elasticity E by ratios:
-~ 2 .
E:E!+iEn; Er: (az) /EG) 2’ E”: (za) UV) 5 (72)
Wny ) +(0/Eg) Wy ) +(0/Eg)

Physical meaning of the dynamic modulus of elasticity E’ (which coincides in phase with the
applied strain €, ) is that it characterizes the elastic dynamic properties of a material that is in a
harmonic deformation field.

Physical meaning of the dynamic loss modulus E” (which lags in phase from the applied strain
€, atan angle @) is that the tangent of the angle of loss ¢ or dissipative factor (ratio of mechanical

energy dissipated during one cycle to the stored energy) is determined by the alternation between E”
and E':
tgo=E"/E'<¢p=arctg(E"/E’). (73)

Since E" = E”((D), then its maximum value determines the "resonance frequency" at which

the maximum amount of mechanical energy is absorbed during 1 cycle of oscillations. We call this
"resonance frequency" based on the rheological model adopted for the study. It may differ from the
"resonance frequency", which is caused by boundary conditions and dimensions, density and the
given material as a half-wave or quarter-wave resonator specified above (formulas (67)-(69)). Studies
show that such "rheological resonance frequency" within the framework of Maxwell's model for the

medium has the form:
Wres™=+Eg /1y (74)
4.2. The Kelvin-Feugt elastically coherent body.

oy =Eg-ex+my-éx; E'=Eg; E"=w-n,. (75)
From the last expression in (75) it can be seen that the "rheological resonance frequency” for
this model lies at infinity, i.e:

®.. —> 0. (76)

res
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4.3. Poynting-Thomson elastically coherent body (A.Yu. Ishlinsky).
Ux+dx’7re=EG'(5x+éx'fsl)’ (77)
where: 7, = (15, /Ep )— time of relaxation, E,, — modulus of elasticity in the viscous piston

branch; z, =M-n\,— during sliding.

Em Eo
For this model we have:
. Eg -(1+a)2 ‘Tre‘Tsl). v Egro-(tg —7pe)
E'— ) Tre I, gro sl —re) (78)
1+ 0% -7p¢") 1+ -7p¢")
Ores™ =110 =Ep /7y (79)
4.4. Ziner's elastically coherent body [2].
- = PN ~ (EG+Ef)
Oy +0y Tre = Eg '(5x + &y 'Tsl); Tre Zg_v; Tgl=—=—— "N\, (80)
f Ec-E¢

where: E ¢ — elastic modulus of the branch parallel to the viscous piston branch; Eg— elastic

modulus of the branch, which is connected in series with two parallel branches (viscous piston and
elastic branch with E¢ ).

For this model we have:

E'— IgG -(1+a)2 T ';re). E"— IgG ‘w'(;sl _;re)_ (81)
1+ ? 7re?) 1+ ? 7re?)
Opes*=1/7re =E¢ I7y. (82)

4.5 Brankov elastic-viscous body [4].
This rheological model consists of three parallel branches (connected in parallel), to which a
fourth branch with a purely elastic element having an elastic modulus is connected in series Eg . In the

first of the parallel branches there are elasticities with modulus of elasticity E,,, which is connected in
series with a viscous piston 1, . The second of the parallel branches contains only a viscous piston m. .
In the third of the parallel branches there is a purely elastic element with modulus of elasticity E .

The constitutive equation for the (rheological) Brankov model has the form [4]:

a6, +a,6, +a,0, =bE +bé +he,, (83)
where:
14 E "
6, =d20, 1d2; & —d2e, [dt%; ag=— D . azz(i+ 1Bt j
E " E " E
NESILT PO SR )
v Eg-my Em Em m,

The values of the real and imaginary parts of the elastic modulus in the Brankov model are follows:

B [(—oazb1_+ b3) : (—o)za1 + a3)+_032a2b2} |

E = : (84)
) (—aim2 + a3)2 +ale?

o [(—alb_2 +a,b ) +(agb, - a_2b3)co] -
“ (-a0”+ a3)2 + i’

Since E”((D) — 0 with ®—> 0 and ®—> o0, then E"(co) there exists an extremum (like a

*

maximum), which determines the ®,,, for this model. Finding ( ®,

) we need to solve the equation:
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d{E"(m)}/dco:O. (86)

It can be shown that equation (86) with respect to o of the third degree:
Az +Bz*+Cz'+ D=0, z=0", (87)
where: A, é, (.:,, D - coefficients, ~which are expressed in terms of

a;, j=(13), b, k=(1,3). Equation (87) can be solved using Cardano's formula. In this case,

one of the possible valid (positive) solutions of this equation (87) will be the one that corresponds to
the case: the (cubic) equation has three roots, of which one is valid and two are complex-conjugate.
To establish and determine this real root it is necessary to investigate this cubic equation according to
standard methods. (This solution is not given here because it is rather cumbersome).

5. Resonance properties of linear viscoelastic bodies, which are described by defining

dependencies o, (&, ) integrally.
5.1. Buergers model. As per [5-8] the rheological properties of asphalt concrete are well
described by the so-called Biirgers model, which consists of two successively connected links: the

Maxwell model and the Kelvin-Feugt model [2]. The differential equations relating stress and strain
for the Biirgers model are of the form [8]:

m-c's+[1+5+&j-c+5-Icsdt:112s'~:+Ezg. (88)

E, S L P

If we differentiate by t (88), then we obtain:
&-6+(1+5+&)-6+5-0:n25+Ezé, (89)
E, S n

where: (T]l, E1) — coefficient of dynamic viscosity and modulus of elasticity of the link, which

corresponds to the Maxwell model; (1’]2, Ez) — dynamic viscosity coefficient and elastic modulus of

the link, which corresponds to the Kelvin-Foigt model. This Biirgers model fits into the reasoning of
Sect. 4.5 related to the elastic-viscous body of Brankov [4], and therefore it also has an extremum of

the maximum type for the E"( ) and sets @,
5.2. Brankow's model of 7., << 7g (6y << Eg - &y).

Single integration over t of the rheological law describing the deformation processes of the
Brankov body [4], provided that r,, <<z (relaxation time/duration is much smaller than the

time/duration of the creep process), allows us to present this model of body deformation as an integral
one, and in differential form it will already look as follows:

a6, +a,0, =bg, +be +be , (90)
where all coefficients (90) a,,a,,b,,b,, b, introduced in 4.5 above.
Let's define for this model oo’;es. According to [4], in order for the rheological model to make
physical sense of the degree polynomials of the differential operators ¢, and €, must either
coincide, or for €, be 1 more than for G, .

The analysis shows that for this case. ®,,, — .

Findings:

1. In this study, the conditions of occurrence and the main integral characteristics of resonance
phenomena (of geometric and rheological types) that are possible in the processes of
vibro-compaction and formation of concrete/construction mixtures, which are modeled by
visco-elastic-plastic rods of finite length, are determined. The (classical) rheological models known
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in the scientific literature, which are scientifically valid and widely used, are used.

2. The results obtained in the paper can be further used to refine and improve the existing
engineering methods of calculation of vibration systems for compaction of concrete/construction
mixtures both at the design stage and during their actual operation. In addition, such an approach in the
technologies of formation and vibration compaction of concrete/construction mixtures will be useful in
establishing the conditions of energy-saving functioning and modes of operation of such systems.
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BUKOPUCTAHHA MOJIEJIE MEXAHIYHUX ®LJIBTPIB Y AHAJI3I ITPOLIECIB
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YKuiscoruii Hayionanvnuii ynisepcumem 6yoisHuymea ma apximexmypu
[oBiTpodnorcekuii np., 31, m. Kuis, 03037, Vkpaina

AHoTauis. Bukopuctani Mmoieni MexaHI4HUX (PUIBTPIB PI3HUX THUIIIB, SIKi 3aCTOCOBYIOTHCS IS
aHaizy mporeciB (GopMyBaHHS Ta YIHIUIbHEHHS OyAiBelIbHUX/OETOHHUX CyMillIel 3a JOMOMOTOI0
BiOpamiitHux mojiB. BcTaHOBIEeHI 3HAu€HHS PE30HAHCHUX YacTOT Ta EKBIBAJICHTHUX Mac s
PI3HOMaHITHHX PE30HATOPIB, 110 MOJIEIIOIOTH PO3MOBCIO/KEHHS Y OCTaHHIX BiOpaIiitHO-XBHILOBUX
YTBOpPEHB. Y OCHOBY aHaIi3y BIUIMBY BiOpaIfiifHOro moJjs Ha mpouecy (popMyBaHHS Ta YIIUTbHEHHS
0eTOHHUX/OYIIBETbHUX CyMillIel y JAHOMY JTOCITiKCHHI IMOKJIaJICHI METOIM MaTeMaTUIHOl (Di3uKH,
KJIACUYHOTO BapialliiHOTO 4YHUCIIEHHS, (I3UKM KOJMBAaHb 1 XBWJIb Ta METOMOJIOTIS PO3B’SI3KY
3BHYAHUX JU(EpeHIiaNbHuX PIBHSAHb ¥ MudepeHliaTbHUX pPIBHSAHb Y YAaCTUHHUX MOXITHUX.
BcraHoBieHI YMOBHM Ta OCHOBHI IHTETpajibHI XapaKTEPUCTUKU PE30HAHCHUX SIBUIL, MOKJIHMBICTh
BUHUKHEHHSI KOTpUX 00yMOBIIeHa: 1) reoMeTpiero MOCTaBIeHOI MOYaTKOBO-KpailoBoi 3a/1a4i (11e Tak
3BaHI «€OMETPUYHI PE30HAHCH» PO3TIISAAYBAHOI CHCTEMH 3 PO3MOJUICHUMH IMapaMeTpamH, II0
MOJIeNII0e 00pOoOIIOBaHy CyMilll); 2) 3aiTHOI0 Y JOCIHIKEHHI POO0YOI0 PEOJIOTIYHOK MOJIEIUTIO
cymii (Ile Tak 3BaHI «PEoJOriuHi pe3oHaHcu»). Po3BUHYTHH 1 HAYyKOBO OOIpYHTOBAaHUM y poOOTi
MiAX17 J03BOJIsIE BCTAHOBUTH OCHOBHI MapaMeTpH 1 MOXIMBOCTI BUKOPUCTAHHS €HEProOIIaJHUX
pexuMiB (QYHKILIOHYBaHHS BIOpallIliHUX CUCTEM, MpU3HAYEHUX A (GopMyBaHHS il BiOpaiiifHOrO
YIIUIbHEHHS BKa3aHUX Bulle cyMimei. OTpuMani y poOOoTi pe3yabTaTH MOKYTh OYTH Yy OaIbIIOMY
BUKOPHUCTAH1 JUIsl YTOYHEHHS M BJOCKOHAJEHHS ICHYIOUMX IHXKEHEPHHUX METOJIB PO3pPaxyHKY
BiOpalifHUX cucTeM st (OpMyBaHHS W YIIIIbHEHHS OETOHHMX/OYAIBETbHUX CyMIllIed 3 METOo
onTuMizalii poOouux pexuMiB iX (YHKIIOHYBAaHHS SK Ha CTajil MPOEKTYBaHH, TaK 1 y pexXuMax
peanbHOi eKCIuTyaTarii.

KurouoBi ciioBa: MoientoBaHHs, MEXaHI4H1 PUIBTPU, PE30HATOPU KOJIMBAHb, aHAI3, TIPOIIECH
¢bopMyBaHHS, YIIUIbHEHHS, OyaAiBeNbHI Ta O€TOHHI cyMmimn, BiOpamiiiHe TmoJe, Pe30HaHCH,
€KBI1BaJICHTH1 MacH.
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