
SUPPLEMENT TO THE PAPER “TESTING EQUALITY OF SPECTRAL

DENSITIES USING RANDOMIZATION TECHNIQUES”

CARSTEN JENTSCH AND MARKUS PAULY

Abstract. In this supplementary material we provide additional supporting simulations for the

asymptotic test and all three randomization tests under consideration in a variety of examples.

1. Supplementary material

Additionally to the performance of the computational least-demanding randomization test ϕ∗

n,
studied in the paper, we also illustrate the performance of the two other randomization tests
ϕ∗

n,cent and ϕ∗

n,stud, as proposed in Section 3. Moreover, we also show their performance for
nominal sizes of α between 0 and 0.2 and additionally compare the power of the asymptotic test
ϕn with all randomization tests.

Again we observe bivariate time series data (Xt = (Xt,1,Xt,2)
T , t = 1, . . . , n) and we want

to test the null hypothesis H0 of equality of both corresponding one-dimensional spectral den-
sities f1(ω) and f2(ω). In the setup of Section 1 of the paper, this means q = 2, p = 1 and
fj(ω) = Fjj(ω), j = 1, 2 and we test

H0: {f1(ω) = f2(ω) for all ω ∈ [−π, π]}

against

H1: {∃ A ⊂ B([−π, π]) with λλ(A) > 0 : f1(ω) 6= f2(ω) for all ω ∈ A}.

In the following, we only consider data from vector moving average models

X t = Bet−1 + et, t ∈ Z (1.1)

and from vector autoregressive models

Xt = AX t−1 + et, t ∈ Z (1.2)

of order one, respectively, where et ∼ N (0,Σ) is a bivariate normally distributed white noise
process with covariance matrix Σ. We consider these models for different choices of A, B and
Σ in the sequel. Recall that the (stationary) V MA(1) and V AR(1) processes in (1.1) and (1.2)
possess spectral densities

fV MA(ω) =
1

2π

(

Id + Be−iω
)

Σ(Id + Be−iω)
T
, ω ∈ [−π, π]

and

fV AR(ω) =
1

2π

(

Id− Ae−iω
)

−1
Σ(Id− Ae−iω)−1

T

, ω ∈ [−π, π],

respectively, where Id denotes the unit matrix.

1.1. Analysis of the size.
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Figure 1. P-value plots for testing equality of two independent spectral densi-
ties. Actual size vs. nominal size is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent

(dotted) and ϕ∗

n,stud (dashed and dotted). Sample size n ∈ {50, 100, 200} in-

creases (left to right) and models MAH0
(Bi), i = 1, 2, 3 are used (top to bottom).

1.1.1. Independent time series.

To investigate the behavior of the test under the null in the independent case, we consider
realizations from VMA and VAR models introduced in (1.1) and (1.2), respectively, where B

and A are chosen as

A1 = B1 =

(

0.1 0
0 0.1

)

, A2 = B2 =

(

0.5 0
0 0.5

)

, A3 = B3 =

(

0.9 0
0 0.9

)

and Σ = Σ1 = diag(1, 1). The moving average model corresponding to Bi is denoted by
MAH0

(Bi) and the autoregressive model corresponding to Ai by ARH0
(Bi).
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Figure 2. P-value plots for testing equality of two independent spectral densi-
ties. Actual size vs. nominal size is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent

(dotted) and ϕ∗

n,stud (dashed and dotted). Sample size n ∈ {50, 100, 200} in-

creases (left to right) and models ARH0
(Ai), i = 1, 2, 3 are used (top to bottom).

Observe that due to the diagonal shape of all involved matrices Σ1, Bi and Ai, i = 1, 2, 3,
we are dealing with two independent univariate time series.

For all models under consideration in this simulation section, we have generated T = 400 time
series. For evaluation of the test statistic, we have chosen the bandwidth h = 0.4 for n = 50,
h = 0.3 for n = 100, h = 0.2 for n = 200 and the Bartlett-Priestley kernel, see Priestley (1981,
p448). Note that AK = 6

5
and BK = 2672π

385
for this particular kernel function. For each time

series, the test ϕn has been executed with critical values from normal approximation as discussed
in Section 2 and the randomization tests ϕ∗

n, ϕ∗

n,cent and ϕ∗

n,stud as discussed in Section 3 of the
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Figure 3. P-value plots for testing equality of two dependent spectral densities.
Actual size vs. nominal size is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent (dotted)
and ϕ∗

n,stud (dashed and dotted). Sample size n ∈ {50, 100, 200} increases (left

to right) and models MAH0
(Bi), i = 4, 5, 6 are used (top to bottom).

paper, where B = 300 randomization Monte Carlo replicates have been used. The corresponding
results are displayed in Figures 1-2 using p-value plots.

1.1.2. Dependent time series.

To investigate the behavior of the test under the null in the dependent case, we consider again
realizations from the models (1.1) and (1.2), but now the matrix B is chosen from

B4 =

(

0.1 0.5
0.5 0.1

)

, B5 =

(

0.5 0.5
0.5 0.5

)

, B6 =

(

0.9 0.5
0.5 0.9

)

, (1.3)



SUPPLEMENTARY MATERIAL 5

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

a)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

b)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

c)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

d)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

e)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

f)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

g)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

h)

nominal size

ac
tu

al
 s

iz
e

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

i)

nominal size

ac
tu

al
 s

iz
e

Figure 4. P-value plots for testing equality of two dependent spectral densities.
Actual size vs. nominal size is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent (dotted)
and ϕ∗

n,stud (dashed and dotted). Sample size n ∈ {50, 100, 200} increases (left

to right) and models ARH0
(Ai), i = 4, 5, 6 are used (top to bottom).

denoted by MAH0
(Bi), i = 4, 5, 6, and the matrix A from

A4 =

(

0.1 0.5
0.5 0.1

)

, A5 =

(

0.5 0.2
0.2 0.5

)

, A6 =

(

0.9 0
0 0.9

)

, (1.4)

denoted by ARH0
(Ai), i = 4, 5, 6, and

Σ2 =

(

1 0.5
0.5 1

)

.

Observe that due to the shape of Σ2, Bi and Ai, i = 4, 5, 6, we are dealing with two dependent

time series whose marginal spectral densities are equal. The results are shown in Figures 3-4.
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Figure 5. P-value plots for testing equality of two independent spectral densi-
ties. Actual size vs. nominal size is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent

(dotted) and ϕ∗

n,stud (dashed and dotted) in model ARH0
(A3). Sample size

n ∈ {50, 100, 200} increases (left to right) and bandwidth h ∈ {0.2, 0.4, 0.6}
increases (top to bottom).

It is also worth noting that setting the off-diagonal elements in the second and third coefficient
matrix in (1.4) equal to 0.5 would result in non-stationary (explosive) autoregressive models,
which are not within the scope of this paper.

1.1.3. Sensitivity of the test with respect to bandwidth choice under H0.

As already anticipated in the paper we will also analyze the size for different choices of band-
widths. Therefore we have repeated the simulations described above for model ARH0

(A3) and
MAH0

(B5) for different bandwidth choices h ∈ {0.2, 0.4, 0.6} to check how sensitive the tests
behave with respect to its choice. The results are displayed in Figures 5-6. Note that in model
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Figure 6. P-value plots for testing equality of two independent spectral densi-
ties. Actual size vs. nominal size is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent

(dotted) and ϕ∗

n,stud (dashed and dotted) in model MAH0
(B3). Sample size

n ∈ {50, 100, 200} increases (left to right) and bandwidth h ∈ {0.2, 0.4, 0.6} in-
creases (top to bottom).

ARH0
(A3), the tests have to compare two independent time series that have the same unimodal

spectral density. In model MAH0
(B5), the tests have to compare two dependent time series

that have the same spectral density with a more flat shape. Remark that we have chosen these
models to cover two very distinct cases.

1.2. Analysis of the power.

To illustrate the behavior of the tests under the alternative, that is under inequality of both
spectral densities, we consider two models that generate independent and dependent time series,
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Figure 7. Achieved size power curves for testing equality of two independent

spectral densities. Actual size from Figure 1 vs. power is shown for ϕn (solid),
ϕ∗

n (dashed), ϕ∗

n,cent (dotted) and ϕ∗

n,stud (dashed and dotted). Sample size n ∈

{50, 100, 200} increases (left to right) and models ARH1
(Ai) i = 7, 8, 9 are used

(top to bottom).

respectively. First, we consider realizations from the autoregressive model in (1.2). Here, A is
chosen from

A7 =

(

0.9 0
0 0.8

)

, A8 =

(

0.9 0
0 0.7

)

, A9 =

(

0.9 0
0 0.6

)

and Σ = Σ1. The corresponding models are denoted by ARH1
(Ai), i = 7, 8, 9, and due to the

diagonal shape, we are dealing with two independent time series. In the second case, we generate
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Figure 8. Achieved size power curves for testing equality of two dependent spec-
tral densities. Actual size from Figure 1 vs. power is shown for ϕn (solid),
ϕ∗

n (dashed), ϕ∗

n,cent (dotted) and ϕ∗

n,stud (dashed and dotted). Sample size

n ∈ {50, 100, 200} increases (left to right) and models MAH1
(Bi) i = 7, 8, 9

are used (top to bottom).

realizations from the moving average model in (1.1) with B chosen from

B7 =

(

0.5 0.5
0.5 0.6

)

, B8 =

(

0.5 0.5
0.5 0.7

)

, B9 =

(

0.5 0.5
0.5 0.8

)

and Σ = Σ2 denoted by MAH1
(Bi), i = 7, 8, 9. Due to non-diagonal shape, we are dealing with

two dependent time series in this case.

As shown in Figures 1 - 6, some tests tend to over-reject the null hypothesis systematically.
Therefore, it seems to be unfair to compare just the usual size power curves (nominal size vs.
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Figure 9. Achieved size power curves for testing equality of two dependent spec-
tral densities. Actual size from model ARH0

(A3) displayed in Figure 5 vs. power
is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent (dotted) and ϕ∗

n,stud (dashed and

dotted) in model ARH1
(A8). Sample size n ∈ {50, 100, 200} increases (left to

right) and bandwidth h ∈ {0.2, 0.4, 0.6} increases (top to bottom)

power) to judge their performances under the alternative. For this reason, we present achieved

size power curves that use actual sizes obtained for models ARH0
(A3) and MAH0

(B5) as dis-
played in panels g)-i) of Figure 2 and in d)-f) of Figure 3, respectively, instead of the nominal
sizes. A comparison of these plots is shown in Figures 7 and 8 for ARH1

(Ai) (independent case)
and MAH1

(Ai) (dependent case), i = 7, 8, 9, respectively. When studying these plots it seems
that there are some missing values, especially for the unconditional test ϕn. However, these can
be explained by the bad actual sizes of some tests, e.g. the actual size of ϕn in model ARH0

(A3)
with a sample size of n = 50 is always greater than 0.29, see panel g) of Figure 2. This explains
e.g. the ’missing values’ in panel g) of Figure 7 for actual sizes less than 0.29
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Figure 10. Achieved size power curves for testing equality of two dependent

spectral densities. Actual size from model MAH0
(B3) displayed in Figure 6 vs.

power is shown for ϕn (solid), ϕ∗

n (dashed), ϕ∗

n,cent (dotted) and ϕ∗

n,stud (dashed

and dotted) in model MAH1
(B8). Sample size n ∈ {50, 100, 200} increases (left

to right) and bandwidth h ∈ {0.2, 0.4, 0.6} increases (top to bottom)

1.2.1. Sensitivity of the test with respect to bandwidth choice under H1.

To conclude with the analysis of the power, we have repeated the simulations described above
for models ARH1

(A8) and MAH1
(B8) for different bandwidths h ∈ {0.2, 0.4, 0.6} to check how

sensitive the tests behave with respect to its choice. Note that in model ARH1
(A8), the tests

have to compare two independent time series that have different unimodal spectral densities.
In model MAH1

(B8), the tests have to compare two dependent time series that have different
spectral densities with a more flat shape.
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1.3. Discussion.

From Figures 1 - 6, it can be seen that the asymptotic test ϕn has difficulties in keeping the
prescribed level and tends to overrejects the null systematically for all small (n = 50) and mod-
erate (n = 100) sample sizes in all situations. Its performance is not even desirable for larger
sample sizes (n = 200). Especially for the most critical autoregressive models ARH0

(A3) (inde-
pendent case) and ARH0

(A6) (dependent case), where the corresponding spectral densities have
non-flat shapes and are rather difficult to estimate, its null approximation is extremely poor and
the performance is unacceptable. Nevertheless, this poor performance is not surprising since the
slow convergence speed of L2-type statistics is already known, see for instance Paparoditis (2000).

In comparison to that, all randomization tests ϕ∗

n, ϕ∗

n,cent and ϕ∗

n,stud perform better than ϕn.
In particular the computationally least-demanding version ϕ∗

n holds the prescribed level very
satisfactorily in all considered situations. However, the other randomization tests ϕ∗

n,cent and
ϕ∗

n,stud tend to be a little bit more liberal than ϕ∗

n for smaller sample sizes, where ϕ∗

n,cent has in
general a better output than ϕ∗

n,stud. Actually both do not perform very well for the small sam-

ple size of n = 50 particularly for the critical models ARH0
(A3) and ARH0

(A6) in comparison
to ϕ∗

n. Nevertheless, with increasing sample size (n = 100, 200) their performance gets much
better; especially the centered version ϕ∗

n,cent has comparable results to ϕ∗

n. An explanation for
this observations is given by the slow convergence speed of the mean and variance estimators,
where spectral density estimators are involved. Observe that no additional quantities as µ0 or
τ0 have to be estimated nonparametrically for ϕ∗

n.

Finally, Figures 5 and 6 show that the bandwidth selection only has a slight effect on the
behavior of the randomization tests, where this choice is more crucial for ϕn. Again particularly
ϕ∗

n does not seem to react sensitively to the bandwidth choice in the small sample case. For
larger sample sizes all randomization procedures do not seem to be very sensitive to variations of
h. This suggests that the randomization technique can be applied without being unsure about
setting any tuning parameters, which is a big advantage in comparison to other resampling
methods, which usually depend on even more tuning parameters. Nevertheless, one can still
apply a computational-more demanding data-driven bandwidth selection method as has been
done in the simulation study of the paper.

Figures 7 and 8 show the power behavior of all tests. Note that we only show the fair comparison,
where we compare the power of the tests to their actual size. It can be seen from these figures
that there is actually no big difference in the power behavior between all four considered tests.
Moreover, when studying the panels with increasing sample sizes (from left to right) the theoret-
ically proved consistency results from the paper can be confirmed by the simulations. As already
mentioned above note that the late start of the curves of some tests (especially of ϕn in Figure 8)
is reasoned by their poor actual size performances in these situations as shown in Figures 2 and 3.

Finally, Figures 9 and 10 illustrate that the bandwidth selection again only has a slight ef-
fect on the power behavior of all randomization tests.

Additionally to the simulation experience of the paper we may summarize the current experience
as follows:

• The randomization technique makes sure that the corresponding tests keep the prescribed
level for small sample sizes quite well.
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• All considered randomization tests have the big advantage that their performances do
not depend on the choice of any additional tuning parameter except for the bandwidth
and its choice is not as crucial as for the asymptotic test.

• From all tests the randomization test ϕ∗

n keeps the prescribed level almost always the
best, is computationally least-demanding than the other randomization tests and it can
be recommended in particular for small samples and linear time series.

• The performance of ϕ∗

n becomes even more excellent if one compares its behavior for the
very small sample size of n = 50 with the poor performance of the unconditional test.

• Furthermore, the power performance of all tests (measured as power in comparison to
actual size) is not really distinguishable and, as usual under consistency, improves for all
tests with increasing sample size, see also the extensive simulation results in the paper.

• Finally, to sum up, the randomization procedure helps to hold the prescribed level under
the null more satisfactorily and does not forfeit power under the alternative in comparison
to the unconditional case
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