Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 14, 2017

Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR: verification of the simulation results

Sensitivitätsanalyse eines thermohydraulischen Modells eines Westinghouse-DWR: Verifizierung der Simulationsergebnisse
  • A. Z. Farahani , F. Yousefpour and S. M. Hoseyni
From the journal Kerntechnik

Abstract

Development of a steady-state model is the first step in nuclear safety analysis. The developed model should be qualitatively analyzed first, then a sensitivity analysis is required on the number of nodes for models of different systems to ensure the reliability of the obtained results. This contribution aims to show through sensitivity analysis, the independence of modeling results to the number of nodes in a qualified MELCOR model for a Westinghouse type pressurized power plant. For this purpose, and to minimize user error, the nuclear analysis software, SNAP, is employed. Different sensitivity cases were developed by modification of the existing model and refinement of the nodes for the simulated systems including steam generators, reactor coolant system and also reactor core and its connecting flow paths. By comparing the obtained results to those of the original model no significant difference is observed which is indicative of the model independence to the finer nodes.

Kurzfassung

Die Entwicklung eines Modells für einen stationären Zustand ist der erste Schritt bei der Sicherheitsanalyse. Das entwickelte Modell sollte zuerst qualitativ analysiert werden, dann ist eine Sensitivitätsanalyse zur Anzahl der Knoten für Modelle verschiedener Systeme erforderlich, um die Zuverlässigkeit der erhaltenen Ergebnisse sicher zu stellen. Dieser Beitrag zielt darauf, durch eine Sensitivitätsanalyse die Unabhängigkeit der Modellergebnisse von der Anzahl der Knoten in einem qualifizierten MELCOR-Modell für einen Westinghouse-Druckwasserreaktor zu zeigen. Dafür und zur Minimierung von Anwenderfehlern wird die Analysesoftware SNAP verwendet. Verschiedene Sensitivitätsfälle wurden entwickelt durch Modifizierung des vorhandenen Modells und Verfeinerung der Knoten für die simulierten Systeme Dampferzeuger, Reaktorkühlsystem und Reaktorkern mit seinen verbundenen Strömungswegen. Durch Vergleich der erhaltenen Ergebnisse mit denen des ursprünglichen Modells wurde kein signifikanter Unterschied festgestellt, was bezeichnend ist für die Unabhängigkeit des Modells von den verfeinerten Knoten.

References

1 Martinez-Quiroga, V.; Reventos, F.: The Use of System Codes in Scaling Studies: Relevant Techniques for Qualifying NPP Nodalizations for Particular Scenarios. Hindawi Publishing Corporation Science and Technology of Nuclear Installations, Volume 2014, Article ID 138745, 13 pages10.1155/2014/138745Search in Google Scholar

2 Petruzzi, A.; D'Auria, F.; Giannotti, W.: Description of the procedure to qualify the nodalization and to analyze the code results. DIMNP NT 557(05), May 2005Search in Google Scholar

3 Bonuccelli, M.; D'Auria, F.; Debrecin, N.; Galassi, G. M.: A methodology for the qualification of thermalhydraulic codes nodalizations. Conference: 6th Int. Topical Meet on Nuclear Reactor Thermal-hydraulics (NURETH-6), Grenoble (F), Oct. 5–8, 1993Search in Google Scholar

4 IAEA-Safety Reports Series: Accident Analysis for Nuclear Power Plants. Safety Reports Series No. 23, ISSN 1020-6450, International Atomic Energy Agency, Vienna, 2002Search in Google Scholar

5 Petruzzi, A.; D'Auria, F.: Thermal-Hydraulic System Codes in Nuclear Reactor Safety and Qualification Procedures. Hindawi Publishing Corporation Science and Technology of Nuclear Installations, Volume 2008, Article ID 460795, 16 pages 200710.1155/2008/460795Search in Google Scholar

6 Reisa, P. A. L.; Costaa, A. L.; Pereiraa, C.; Silvaa, C. A. M.: Velosoa, M. A. F.; Mesquitac, A. Z: Sensitivity analysis to a RELAP5 nodalization developed for a typical TRIGA research reactor. Nuclear Engineering and Design242 (2012) 30030610.1016/j.nucengdes.2011.10.022Search in Google Scholar

7 Reis, P. A. L., Costa, A. L., Pereira, C., Veloso, M. A. F., Mesquita, A. Z., Soares, H. V., Barros, G. P.: Assessment of a RELAP5 model for the IPR-R1 TRIGA research reactor. Annals of Nuclear Energy37 (2010) 1341135010.1016/j.anucene.2010.05.013Search in Google Scholar

8 Nilsson, L.: Development of an Input Model to MELCOR 1.8.5 for the Ringhals 3 PWR. SKI Report2004: 55, December 2004Search in Google Scholar

9 Nilsson, L.: Development of an Input Model to MELCOR 1.8.5 for Oskarshamn 3 BWR. SKI Report 2007: 05, May 2007Search in Google Scholar

10 Bajs, T.; Debrecin, N.: Development of the Qualified Plant Nodalization for Safety and Operational Transient Analysis. Faculty of Electrical Engineering and Computing. NPP Krsko, Vrbina 12, 8270 Krsko, SloveniaSearch in Google Scholar

11 Shahedi, S.; Jafari, J.; Boroushaki, M.; D'Auria, F.: Development of a qualified nodalization for small-break LOCA transient analysis in PSB-VVER integral test facility by RELAP5 system code. Nuclear Engineering and Design240 (2010) 3309332010.1016/j.2010Search in Google Scholar

12 Yousefpour, F.; Shokri, F.; Soltani, H.: IR-360 nuclear power plant safety functions and component classification. Nuclear Engineering and Design240 (2010) 2847286110.1016/j.nucengdes.2010.07.027Search in Google Scholar

13 Li, L.; Wang, M.; Tian, W.; Su, G.; Qiu, G.: Severe accident analysis for a typical PWR using the MELCOR code. Progress in Nuclear Energy71 (2014) 303810.1016/j.pnucene.2013.10.014Search in Google Scholar

14 Kim, T. W.; Song, J.; Huong, V. T.; Kim, D. H.; Rhee, B. W.; Revankar, S.: Sensitivity study on severe accident core melt progression for advanced PWR using MELCOR code. Nuclear Engineering and Design269 (2014) 15515910.1016/j.nucengdes.2013.08.022Search in Google Scholar

15 Sevón, T.: A MELCOR model of Fukushima Daiichi Unit 1 accident. Annals of Nuclear Energy83 (2015) 11110.1016/j.anucene.2015.04.031Search in Google Scholar

16 Sevón, T.: A MELCOR model of Fukushima Daiichi Unit 3 accident. Nuclear Engineering and Design284 (2015) 809010.1016/j.nucengdes.2014.11.038Search in Google Scholar

17 Gauntt, R. O. et al.: MELCOR Computer Code Manuals, Vol.1: Primer and Users' Guide, Version 1.8.6 September 2005. Sandia National Laboratories Albuquerque, NM 87185–0739, NUREG/CR-6119, Rev. 3, SAND 2005–5713Search in Google Scholar

18 Humphries, L. L.; Longmire, P.; Cole, R. K.; Young, M. F.; Jun, J.; Cash, J. E. et al.: NUREG/CR-6119. MELCOR Computer Code Manuals, vol. 2. REV. 4. 2008Search in Google Scholar

19 APT, Symbolic Nuclear Analysis Package (SNAP), User's Manual. Report, Applied Programming Technology (APT), Inc., 2008Search in Google Scholar

20 IAEA Safety Reports Series: Approaches and Tools for Severe Accident Analysis for Nuclear Power Plants. Safety Reports Series No. 56, ISSN 1020–6450; International Atomic Energy Agency, Vienna, 2008Search in Google Scholar

21 Thermal Hydrualic Design of Reactor Pressure Vesse. Beznau Nuclear Power Plant, 2009Search in Google Scholar

22 Thermal Hydrualic Design of The Steam Generator. Beznau Nuclear Power Plant, 2010Search in Google Scholar

23 Design Specification for Steam Generator. Beznau Nuclear Power Plant, 2009Search in Google Scholar

Received: 2016-03-10
Published Online: 2017-06-14
Published in Print: 2017-07-26

© 2017, Carl Hanser Verlag, München

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.3139/124.110627/html
Scroll to top button