Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 2, 2013

Development of a Hybrid Solid-Microcellular Co-injection Molding Process

  • L.-S. Turng and H. Kharbas

Abstract

This paper presents the development of a hybrid solid-microcellular co-injection molding process that combines aesthetic and processing advantages of injection molding with benefits and property attributes of microcellular plastics (MCPs). A two-color injection molding machine has been modified and equipped with an interfacial platen and a supercritical fluid (SCF) unit for co-injection molding with regular resins and MCPs. Co-injection molded polystyrene (PS) parts with a microcellular core encapsulated by the solid skin layer have been successfully produced. Systematic experiments were carried out with solid-microcellular co-injection molding, conventional solid-solid co-injection molding, and regular microcellular injection molding processes to study the effects of process conditions and core/skin volume ratios on the penetration and morphology of the microcellular core. Light microscopy and scanning electron microscopy (SEM) of the solid-microcellular co-injection molded specimens reveal a microcellular core with fairly fine and uniform cell size of 8 to 12 microns and a cell density of up to 3 × 10 cells/cm. Under similar process conditions, microcellular cores were found to penetrate longer and generate a more uniform and thicker skin layer than do solid cores. While improving the surface finish with solid skin layers, this process is capable of producing parts with reduced sink marks, lighter part weights, and shorter cycle times.


Mail address: L.-S. Turng, Polymer Engineering Center, Department of Mechanical Engineering, 1513 University Avenue, Madison, WI 53706-1572, USA E-mail:

References

1 Suh, N. P., in: Innovation in Polymer Processing – Molding. Stevenson, J. F. (Ed.), Hanser Publishers, Munich (1996).Search in Google Scholar

2 Park, C. B., Doroudiani, S., Kortschot, M. T.: Polym. Eng. Sci.38, p. 1205 (1998).10.1002/pen.10289Search in Google Scholar

3 Shimbo, M., Baldwin, D. F., Suh, N. P.: Polym. Eng. Sci.35, p. 1387 (1995).10.1002/pen.760351710Search in Google Scholar

4 Seeler, K. A., Kumar, V.: J. Reinforced Plastics and Composites12, p. 359 (1993).10.1177/073168449301200308Search in Google Scholar

5 Kwag, C., Manke, C. W., Gulari, E.: J. Polym. Sci., Part B: Polym. Phys.37, p. 2771 (1999).10.1002/(SICI)1099-0488(19991001)37:19<2771::AID-POLB6>3.0.CO;2-9Search in Google Scholar

6 Royer, J. R., Gay, Y. J., Desimone, J. M., Khan, S. A.: J. Polym. Sci., Part B: Polym. Phys.38, p. 3168 (2000).10.1002/1099-0488(20001201)38:23<3168::AID-POLB170>3.0.CO;2-ESearch in Google Scholar

7 Kwag, C., Manke, C. W., Gulari, E.: Ind. Eng. Chem. Res.40, p. 3048 (2001).10.1021/ie000680eSearch in Google Scholar

8 Zhang, Z., Handa, Y. P.: J. Polym. Sci., Part B: Polym. Phys.37, p. 977 (1998).10.1002/(SICI)1099-0488(19980430)36:6<977::AID-POLB5>3.0.CO;2-DSearch in Google Scholar

9 Handa, Y. P., Kruus, P., O'Neill, M.: J. Polym. Sci., Part B: Polym. Phys.34, p. 2635 (1996).10.1002/(SICI)1099-0488(19961115)34:15<2635::AID-POLB11>3.0.CO;2-7Search in Google Scholar

10 Xu, J., Pierick, D.: J. Injection Molding Tech.5, p. 152 (2001).Search in Google Scholar

11 Turng, L. S.: J. Injection Molding Tech.5, p. 160 (2001).Search in Google Scholar

12 Escales, E.: Kunststoffe60 p. 847 (1970).Search in Google Scholar

13 Selden, R.: Journal of Injection Molding Technolgy1, p. 189 (1997).Search in Google Scholar

14 Elkovitch, D., Tomasko, L., Lee, J.: Polym. Eng. Sci.39, p. 2075 (1999).10.1002/pen.11599Search in Google Scholar

15 Han, D., Ma, C. J.: Appl. Polym. Sci.28, p. 831 (1983).10.1002/app.1983.070280234Search in Google Scholar

16 Han, D., Ma, C. J.: Appl. Polym. Sci.28, p. 851 (1983).10.1002/app.1983.070280235Search in Google Scholar

17 Han, D., Ma, C. J.: Cellular Plastics, p. 361 (1982).Search in Google Scholar

18 Lee, M., Park, C., Tzoganakis, C.: Polym. Eng. Sci.39, p. 99 (1999).10.1002/pen.11400Search in Google Scholar

19 Young, S., White, J., Clark, E., Oyanagi, Y.: Polym. Eng. Sci.20, p. 798 (1980).10.1002/pen.760201206Search in Google Scholar

20 White, J., Lee, B.: Polym. Eng. Sci.15, p. 481 (1975).10.1002/pen.760150702Search in Google Scholar

21 Naguib, H. E., Park, C. B., Panzer, U., Reichelt, N.: Polym. Eng. Sci.42, p. 1481 (2002).10.1002/pen.11045Search in Google Scholar

22 Elkovitch, M. D., Lee, J., Tomasko, D. L.: Polym. Eng. Sci.41, p. 2108 (2001).10.1002/pen.10906Search in Google Scholar

23 Gulari, E., Manke, C. W.: 219th ACS National Meeting, I & EC – 106, San Francisco (2000).Search in Google Scholar

24 Turng, L. S., Wang, V. W., Wang, K. K.: ASME Trans. J. Engineering Materials and Technology115, p. 48 (1993).10.1115/1.2902156Search in Google Scholar

Received: 2003-6-23
Accepted: 2003-10-28
Published Online: 2013-05-02
Published in Print: 2004-03-01

© 2004, Carl Hanser Verlag, Munich

Downloaded on 9.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.1806/html
Scroll to top button