Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 10, 2017

Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds

Gefügecharakterisierung und Korrosionsprüfung von gepulsten MAG-Schweißungen eines Duplexstahles
  • Ion Mitelea , Ion Dragoş Uţu , Sorin Dumitru Urlan and Olimpiu Karancsi
From the journal Materials Testing

Abstract

Duplex stainless steels are extremely attractive construction materials for their usage in intense aggressive environments. They offer numerous advantages compared to the austenitic stainless steels having an excellent behavior to pitting and cavernous corrosion, and a high resistance to stress cracking corrosion in chlorides media. However, their corrosion properties are largely dependent on the microstructural factors such as: the quantitative ratio of the two phases ferrite/austenite (F/A), the presence of intermetallic compounds and the distribution of the alloying elements between the ferrite and austenite. As a result of the thermal cycles experienced by the base metal without a post-weld heat treatment, the mechanical properties are significantly different in the heat affected zone and the deposited metal compared with the properties of the base metal. The present paper highlights the effect of the post-weld solution treatment in order to restore the balance between austenite and ferrite in the welded joint areas and also to limit undesirable precipitation of secondary phases with implications for increasing the corrosion resistance.

Kurzfassung

Duplexstähle sind sehr attraktive Konstruktionswerkstoffe bei Verwendung in sehr aggressiven Umgebungen. Sie bieten verschiedene Vorteile im Vergleich zu hochlegierten austenitischen Stählen mit einem exzellenten Verhalten bezüglich Lochkorrosion und kavernenartiger Korrosion sowie eines hohen Widerstandes gegen Risskorrosion in chloridhaltigen Medien. Dennoch hängen ihre Korrosionseigenschaften sehr von mikrostrukturellen Faktoren ab, wie zum Beispiel die quantitativen Anteile der beiden Phasen Ferrit/Austenit (F/A), die Anwesenheit von intermetallischen Phasen und die Verteilung der Legierungselemente zwischen Ferrit und Austenit. Als Folge der thermischen Zyklen, die der Grundwerkstoff erfährt, sind die mechanischen Eigenschaften in der Wärmeeinflusszone und dem Schweißgut ohne eine Wärmenachbehandlung signifikant verschieden im Vergleich zu den Eigenschaften des Grundwerkstoffes. Im vorliegenden Beitrag werden die Auswirkungen des Lösungsglühens zur Wiederherstellung der Balance von Ferrit und Austenit in der Schweißverbindung sowie zur Eingrenzung unerwünschter Ausscheidungen sekundärer Phasen hervorgehoben, und zwar mit dem Ziel der Verbesserung des Korrosionswiderstandes.


*Correspondence Address, Assoc. Prof. Dr. Eng. Ion-Dragos Uţu, Faculty of Mechanical Engineering, Politehnica University Timisoara, Bv. Mihai Viteazu, No.1, RO-300222, Timisoara, Romania, E-mail: ,

Prof. Dr. Ion Mitelea, is currently Professor of Materials Science at University Politehnica Timisoara, Romania. His research interests include materials and heat treatments for welded structures and selection and use of engineering materials.

Dr. Ion Dragoş Uţu, born 1978, graduated from University Politehnica Timisoara, Romania, as Bachelor and PhD, and is currently Associate Professor in the Material Science and Manufacturing Department, University Politehnica Timisoara, Romania.

Sorin Dumitru Urlan is a PhD student at University Politehnica Timisoara, Romania. He performs his research experiments under the coordination of Prof. Mitelea.

Dr. Olimpiu Karancsi, is an assistant at Victor Babes University of Medicine and Pharmacy, Timisoara, Romania, being a specialist in oral implantology and prosthetic restorations on implants.


References

1 Y.Jiang, H.Tana, Z.Wang, J.Hong, L.Jiang, J.Li: Influence of Creq/Nieq on pitting corrosion resistance and mechanical properties of UNS S32304 duplex stainless steel welded joints, Corrosion Science70 (2013) pp. 25225910.1016/j.corsci.2013.01.037Search in Google Scholar

2 D. H.Kang, H. W.Lee: Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds, Corrosion Science74 (2013), pp. 39640710.1016/j.corsci.2013.04.033Search in Google Scholar

3 H.Tasalloti, P.Kah, J.Martikainen: Effect of heat input on dissimilar welds of ultra-high strength steel and duplex stainless steel: Microstructural and compositional analysis, Materials Characterization123 (2017), pp. 294110.1016/j.matchar.2016.11.014Search in Google Scholar

4 Z.Zhang, Z.Wang, Y.Jiang, H.Tan, D.Han, Y.Guo: Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds, Corrosion Science62 (2012), pp. 425010.1016/j.corsci.2012.04.047Search in Google Scholar

5 H.Liou, R.Hsieh, W.Tsai: Microstructure and stress corrosion cracking in simulated heat-affected zones of duplex stainless steels, Corrosion Science44 (2002), pp. 2841285610.1016/S0010-938X(02)00068-9Search in Google Scholar

6 J. D.Kotecki: Ferrite control in duplex stainless steel weld metal, Welding Research Supplement (1986), pp. 273278Search in Google Scholar

7 M.Sadeghian, M.Shamanian, A.Shafyei: Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel, Materials & Design60 (2014), pp. 67868410.1016/j.matdes.2014.03.057Search in Google Scholar

8 I. D.Utu, I.Mitelea, S. D.Urlan, C. M.Craciunescu: Transformation and precipitation reactions by metal active gas pulsed welded joints from X2CrNiMoN22-5-3 duplex stainless steels, Materials9 (2016), No. 7, pp. 11510.3390/ma9070606Search in Google Scholar PubMed PubMed Central

9 Y.Yang, B.Yan, J.Li, J.Wang: The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel, Corrosion Science53 (2011), pp. 3756376310.1016/j.corsci.2011.07.022Search in Google Scholar

10 R.Badji, M.Bouabdallah, B.Bacroix, C.Kahloun, B.Belkessa, H.Maza: Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds, Materials Characterization59 (2008), pp. 44745310.1016/j.matchar.2007.03.004Search in Google Scholar

11 M. SarkariKhorrami, A. M.Mostafaei, H.Pouraliakbar, H. A.Kokabi: Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints, Materials Science Engineering A608 (2014), pp. 354510.1016/j.msea.2014.04.065Search in Google Scholar

12 J.Luo, J. D.Liu, J. G.Zhao, J. X.Wang, Q. H.Ran: Relationship between microstructure of fusion zone and mechanical properties of 2205 duplex stainless steel in double-sided submerged arc welding, Rare Metal Materials and Engineering40 (2011), pp. 369374Search in Google Scholar

13 I.Mitelea, I. D.Utu, S.Cutean, C. M.Craciunescu: TIG deposition of Ti on steel substrates using Cu as interlayer, Materials Testing58 (2016), No. 9, pp. 72573010.3139/120.110911Search in Google Scholar

14 S.Topolska, J.Labanowski: Effect of microstructure on impact toughness of duplex and superduplex stainless steels, Journal of Achievements in Materials and Manufacturing Engineering36 (2009), No. 2, pp. 142149Search in Google Scholar

15 H.Sarlak, M.Atapour, M.Esmailzadeh: Corrosion behavior of friction stir welded lean duplex stainless steel, Materials & Design – Part A66 (2015), pp. 20921610.1016/j.matdes.2014.10.060Search in Google Scholar

16 J.Xiong, M. Y.Tan, M.Forsyth: The corrosion behaviors of stainless steel weldments in sodium chloride solution observed using a novel electrochemical measurement approach, Desalination327 (2013), pp. 394510.1016/j.desal.2013.08.006Search in Google Scholar

17 G.Shaoning, S.Junsheng, G.Lingyu, W.Hongquan: Evolution of microstructure and corrosion behavior in 2205 duplex stainless steel GTA – welding joint, Journal of Manufacturing Processes19 (2015), pp. 323710.1016/j.jmapro.2015.03.009Search in Google Scholar

18 H.Tan, Z.Wang, Y.Jiang, Y.Yang, B.Deng, H.Song: Influence of welding thermal cycles on microstructure and pitting corrosion resistance of 2304 duplex stainless steels, Corrosion Science55 (2012), pp. 36837710.1016/j.corsci.2011.10.039Search in Google Scholar

19 D.Deng, R.Chen, Q.Sun, X.Li: Microstructural study of 17-4PH stainless steel after plasma-transferred arc welding, Materials8 (2015), No. 2, pp. 42443410.3390/ma8020424Search in Google Scholar PubMed PubMed Central

20 L.Jian, D.Yaling, L.Longfei, W.Xiaoming: Microstructure of 2205 duplex stainless steel joint in submerged arc welding by post weld heat treatment, Journal of Manufacturing Processes16 (2014), No. 1, pp. 14414810.1016/j.jmapro.2013.06.013Search in Google Scholar

Published Online: 2017-07-10
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.111054/html
Scroll to top button