Structure, Quaternary history, and general geology of the Corral Canyon area, Los Angeles County, California

Open-File Report 65-179
By:  and 

Links

Abstract

The Corral Canyon nuclear power plant site consists of about 305 acres near the mouth of Corral Canyon in the central Santa Monica Mountains; it is located on an east-trending segment of the Pacific Coast between Point Dume and Malibu Canyon, about 28 miles due west of Los Angeles. The Santa Monica Mountains are the southwesternmost mainland part of the Transverse Ranges province, the east-trending features of which transect the otherwise relatively uniform northwesterly trend of the geomorphic and geologic features of coastal California. The south margin of the Transverse Ranges is marked by the Santa Monica fault system, which extends eastward near the 34th parallel for at least 145 miles from near Santa Cruz Island to the San Andreas fault zone. In the central Santa Monica Mountains area the Santa Monica fault system includes the Malibu Coast fault and Malibu Coast zone of deformation on the north; from the south it includes an inferred fault--the Anacapa fault--considered to follow an east-trending topographic escarpmemt on the sea floor about 5 miles south of the Malibu Coast fault. The low-lying terrain south of the fault system, including the Los Angeles basin and the largely submerged Continental Borderland offshore, are dominated by northwest-trending structural features. The Malibu Coat zone is a wide, east-trending band of asymmetrically folded, sheared, and faulted bedrock that extends for more than 20 miles along the north margin of the Santa Monica fault system west of Santa Monica. Near the north margin of the Malibu Coast zone the north-dipping, east-trending Malibu Coast fault juxtaposes unlike, in part contemporaneous sedimentary rock sections; it is inferred to be the near-surface expression of a major crustal boundary between completely unrelated basement rocks. Comparison of contemporaneous structural features and stratigraphic sections (Late Cretaceous to middle Miocene sedimentary, rocks and middle Miocene volcanic and intrusive igneous rocks on the north; middle and upper Miocene sedimentary and middle Miocene volcanic rocks on the south) across the fault demonstrates that neither strike slip of less than 25 miles nor high-angle dip slip can account for this juxtaposition. Instead, the Malibu Coast fault is inferred to have been the locus of large-magnitude, north-south oriented, horizontal shortening (north, or upper, block thrust over south block). This movement occurred at or near the northern boundary of the Continental Borderland, the eastern boundary of which is inferred to be the northwest-trending known-active Newport-Inglewood zone of en echelon right lateral strike-slip faults in the western Los Angeles basin. Local structural features and their relation to regional features, such as those in the Malibu Coast zone, form the basis for the interpretation that the Malibu Coast fault has acted chiefly as a thrust fault. Within the Malibu Coast zone, on both sides of the Malibu Coast fault, structural features in rocks that range in age from Late Cretaceous to late Miocene are remarkably uniform in orientation. The predominant trend of bedding, axial surfaces of numerous asymmetric folds, locally pervasive shear surfaces, and faults is approximately east-west and their predominant dip is northward.. The axes of the folds plunge gently east or west. Evidence from faults and shears within the zone indicates that relative movement on most of these was north (upper) over south. Beyond the Malibu Coast zone to the north and south the rocks entirely lack the asymmetric folds, overturned beds, and the locally abundant shears that characterize the rocks within the zone; these rocks were therefore not subjected to the same deforming forces that existed near the Malibu Coast fault. Movement on the Malibu Coast fault and deformation in the Malibu Coast zone occurred chiefly during the interval between late Miocene and late Pleistocene time. The youngest-known faulting in the Malibu Coast zone is late Pl
Publication type Report
Publication Subtype USGS Numbered Series
Title Structure, Quaternary history, and general geology of the Corral Canyon area, Los Angeles County, California
Series title Open-File Report
Series number 65-179
DOI 10.3133/ofr65179
Edition -
Year Published 1965
Language English
Publisher U.S. Geological Survey
Contributing office(s) Geology, Minerals, Energy, and Geophysics Science Center
Description ix, 215, [13] p. :ill., maps ;27 cm.
Google Analytic Metrics Metrics page
Additional publication details