Integrated catchment models for policy development and decision making

Authors

DOI:

https://doi.org/10.31285/AGRO.27.1194

Keywords:

integrated catchment management, modelling, decision making

Abstract

Land-system change, freshwater use, biodiversity loss, and changes in biogeochemical flows affect the resilience of the Earth system as a whole. Effective communication between scientists and policy makers is critical in addressing these challenges. Simulation models can be used as integrators of knowledge and data, and play a key role in facilitating effective boundary work between science and policy. Key issues identified are the reliability of model outcomes and the acknowledgement of their uncertainty. However, the use of models provides an advantage when analysing scenarios. Integrated catchment models can provide feedback about joint interpretation of the data and conceptual understanding, resulting in the identification of data needs. The difficulties related to improving how science informs policy is one of communication and negotiation at the boundary, and models can assist in the co-production between researchers and decision makers.

Downloads

Download data is not yet available.

References

Alonso J, Gorgoglione A, Debone JP, Martínez P, Pou M, Vilaseca F. Monitoreo orientado a la modelación hidrológica integrada cantidad-calidad: piloto cuenca alta del Arroyo Molino. Montevideo: Universidad de la República; 2023. 84p.

Alonso J, Silveira L. Estimación de la disponibilidad hídrica en microcuencas forestadas con Eucalyptus. In: II Congreso Agua Ambiente y Energía; 2019 Sep 25-27; Montevideo, Uruguay [Internet]. Montevideo: AUGM; 2019 [cited 2023 Sep 4]. 6p. Available from: https://bit.ly/3Lolbtg

Ancev T, Stoecker AL. Least-cost watershed management solutions: Using GIS data in economic modeling of a watershed. In: 2003 Annual Meeting of the Southern Agricultural Economics Association. Alabama: Southern Agricultural Economics Association; 2003. 20p. Doi: 10.22004/ag.econ.35005.

Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK. SWAT: model use, calibration, and validation. Trans ASABE. 2012;55(4):1491-508.

Aznarez C, Jimeno-Sáez P, López-Ballesteros A, Pacheco JP, Senent-Aparicio J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021;13(10):2014. Doi: 10.3390/rs13102014.

Burgman M. Governance for effective policy-relevant scientific research: the shared governance model. Asia Pacific Policy Stud. 2015;2:441-51.

Cairney P. Three habits of successful policy entrepreneurs. Policy Polit. 2018;46(2):199-215.

Colloff MF, Wilson BM, Seale-Carlisle TM, Wixted JT. Optimizing the selection of fillers in police lineups. Proc Natl Acad Sci U S A. 2021;118(8):e2017292118. Doi: 10.1073/pnas.2017292118.

Crane A, Palazzo G, Spence LJ, Matten D. Contesting the value of “Creating Shared Value”. Calif Manage Rev. 2014;56(2):130-53.

Cvitanovic C, McDonald J, Hobday AJ. From science to action: principles for undertaking environmental research that enables knowledge exchange and evidence-based decision-making. J Environ Manage. 2016;183(Pt 3):864-74. Doi: 10.1016/j.jenvman.2016.09.038.

Delkash M, Al‐Faraj FAM, Scholz M. Impacts of anthropogenic land use changes on nutrient concentrations in surface waterbodies: a review. Clean (Weinh). 2018;46(5):1800051. Doi: 10.1002/clen.201800051.

Dingle S. Murray-Darling Basin Plan: $8 billion spent and still the Coorong wetland is dying. ABC News [Internet]. 2018 Apr 26 [cited 2023 Sep 4]. Available from: https://www.abc.net.au/news/2018-04-27/coorong-murray-darling-basin-how-to-kill-a-river-system/9698108

Fabbri A, Lai A, Grundy Q, Bero LA. The influence of industry sponsorship on the research agenda: a scoping review. Am J Public Health. 2018;108(11):e9-e16. Doi: 10.2105/AJPH.2018.304677.

GMIC. Grupo interinstitucional de herramientas de modelación para la gestión de la cantidad y calidad de agua [Internet]. 2020 [cited 2023 Sep 4]. Available from: https://proyectoinia-iri-usyd.github.io/GmicUy/

Greenwood R, Raynard M, Kodeih F, Micelotta ER, Lounsbury M. Institutional complexity and organizational responses. Acad Manag Ann. 2011;5(1):317-71.

Gustafsson KM, Lidskog R. Boundary organizations and environmental governance: Performance, institutional design, and conceptual development. Clim Risk Manag. 2018;19:1-11. Doi: 10.1016/j.crm.2017.11.001.

Hall CA, Saia SM, Popp AL, Dogulu N, Schymanski SJ, Drost N, van Emmerik T, Hut R. A hydrologist’s guide to open science. Hydrol Earth Syst Sci. 2022;26:647-64. Doi: 10.5194/hess-26-647-2022.

Han E, Baethgen WE, Ines AVM, Mer F, Souza JS, Berterretche M, Atunez G, Barreira C. SIMAGRI: an agro-climate decision support tool. Comput Electron Agric. 2019;161:241-51. Doi: 10.1016/j.compag.2018.06.034.

Han E, Ines AVM, Baethgen WE. Climate-Agriculture-Modeling and Decision Tool (CAMDT): a software framework for climate risk management in agriculture. Environ Model Softw. 2017;95:102-14. Doi: 10.1016/j.envsoft.2017.06.024.

Hastings F, Mer F, Alonso J, Navas R, Kok P. Modelación con SWAT en la cuenca del Santa Lucía: un ejemplo exitoso de trabajo interinstitucional e interdisciplinario para la gestión de los Recursos Hídricos en Uruguay. In: II Congreso Agua Ambiente y Energía; 2019 Sep 25-27; Montevideo, Uruguay [Internet]. Montevideo: AUGM; 2019 [cited 2023 Sep 4]. 6p. Available from: https://bit.ly/341Uy7a

Hastings F, Perez-Bidegain M, Navas R, Gorgoglione A. Impacts of irrigation development on water quality in the San Salvador watershed (Part 1): assessment of current nutrient delivery and transport using SWAT. Agrocienc Urug. Forthcoming 2023.

Hepburn C. Environmental policy, government, and the market. Oxf Rev Econ Policy. 2010;26(2):117-36.

Holwell S. Soft systems methodology: other voices. Syst Pract Action Res. 2000;13(6):773-97.

Hoppe R. From “knowledge use” towards “boundary work”: sketch of an emerging new agenda for inquiry into science-policy interaction. In: in ’t Veld RJ, editor. Knowledge democracy: consequences for science, politics, and media. Berlin: Springer; 2010. pp. 169-86. Doi: 10.1007/978-3-642-11381-9_13.

Janjić J, Tadić L. Fields of application of SWAT hydrological model: a review. Earth. 2023;4(2):331-44.

Lee LY, Ancev T, Vervoort W. Evaluation of environmental policies targeting irrigated agriculture: the case of the Mooki catchment, Australia. Agric Water Manag. 2012;109:107-16.

Linden B. Basic blue skies research in the UK: are we losing out? J Biomed Discov Collab. 2008;3:3. Doi: 10.1186/1747-5333-3-3.

Lintern A, Webb JA, Ryu D, Liu S, Bende‐Michl U, Waters D, Leahy P, Wilson P, Western AW. Key factors influencing differences in stream water quality across space. WIREs Water. 2018;5(1):e1260. Doi: 10.1002/wat2.1260.

Loucks DP. Science informed policies for managing water. Hydrology. 2021;8(2):66. Doi: 10.3390/hydrology8020066.

Maier HR, Guillaume JHA, van Delden H, Riddell GA, Haasnoot M, Kwakkel JH. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: how do they fit together? Environ Model Softw. 2016;81:154-64. Doi: 10.1016/j.envsoft.2016.03.014.

McLaren D, Markusson N. The co-evolution of technological promises, modelling, policies and climate change targets. Nat Clim Chang. 2020;10:392-7. Doi: 10.1038/s41558-020-0740-1.

Meinke H, Nelson R, Kokic P, Stone R, Selvaraju R, Baethgen W. Actionable climate knowledge: from analysis to synthesis. Clim Res. 2006;33:101-10.

Menéndez C. Monitoreo de Ursea encontró glifosato en el agua potable de muestras de Colonia, Maldonado, Lavalleja, Canelones y Florida. La Diaria [Internet]. 2022 Nov 19 [cited 2023 Mar 14]. Available from: https://bit.ly/3sBxQSV

Mer F, Vervoort RW, Baethgen W. Building trust in SWAT model scenarios through a multi-institutional approach in Uruguay. Socio-Environ Syst Model. 2020;2:17892. Doi: 10.18174/sesmo.2020a17892.

Ministerio de Ambiente (UY). Herramientas de modelación en la gestión ambiental [Internet]. Montevideo: MA; 2022 [cited 2023 Sep 4]. Available from: https://www.gub.uy/ministerio-ambiente/comunicacion/noticias/herramientas-modelacion-gestion-ambiental

Mueller B. Why public policies fail: Policymaking under complexity. EconomiA. 2020;21(2):311-23.

Narbondo S, Crisci M, Chreties C. Modelación hidrológica diaria en cuencas con diferentes caracetrísticas de Uruguay. In: XXVIII Congreso Latinoamericano de Hidráulica; 2018 Sep 18-21; Buenos Aires, Argentina [Internet]. Buenos Aires: IAHR; 2018 [cited 2023 Sep 4]. 2p. Available from: https://www.ina.gob.ar/congreso_hidraulica/resumenes/LADHI_2018_RE_216.pdf

Navas R, Alonso J, Gorgoglione A, Vervoort RW. Identifying climate and human impact trends in streamflow: a case study in Uruguay. Water. 2019;11(7):1433. Doi: 10.3390/w11071433.

Nervi E, Borges M, Gelós M, Alonso J, Navas R, Kok P, Hastings F, Valles J, Erasun V, Souto A, Frabasile F, Rosas F, Vervoort RW, Baethgen W. Apoyo a la gestión de los recursos hídricos en Uruguay: Grupo de modelación integrada de cuenca: experiencia de trabajo interinstitucional. In: Cambios, desafíos y soluciones: el rol de la Ingeniería Ambiental en el desarrollo sostenible [Internet]. XI Congreso Nacional de AIDIS; 2022 Oct 3-5; Montevideo, Uruguay. Montevideo: AIDIS; 2022 [cited 2023 Sep 4]. 9p. Available form: https://aidis.org.uy/wp-content/uploads/2022/11/Nervi-Eliana.pdf

Nervi E, Gelós M, Kok P, Alonso J, Navas R, Badano l, Neighbur N, Hastings F, Vervoort RW, Baethgen W. Evaluación de escenarios de uso de suelo en una subcuenca del Río Santa Lucía utilizando el modelo SWAT. In: Cambios, desafíos y soluciones: el rol de la Ingeniería Ambiental en el desarrollo sostenible [Internet]. XI Congreso Nacional de AIDIS; 2022 Oct 3-5; Montevideo, Uruguay. Montevideo: AIDIS; 2022 [cited 2023 Sep 4]. 8p. Available form: https://aidis.org.uy/wp-content/uploads/2022/11/Nervi-Eliana-2.pdf

Nervi E, Gorgoglione A, Vervoort RW, Sposito V, Faggian R. Aplicación del modelo SWAT en estudios de la presencia de glifosato en escorrentías rurales en una subcuenca del río Santa Lucía. In: II Congreso Agua Ambiente y Energía; 2019 Sep 25-27; Montevideo, Uruguay [Internet]. Montevideo: AUGM; 2019 [cited 2023 Sep 4]. 6p. Available from: https://bit.ly/3Zl8QM0

Oreskes N, Shrader-Frechette K, Belitz K. Verification, validation, and confirmation of numerical models in the Earth sciences. Science. 1994;263(5147):641-6. Doi: 10.1126/science.263.5147.641.

Pappenberger F, Beven KJ. Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour Res. 2006;42(5). Doi: 10.1029/2005WR004820.

Pielke JRA. The honest broker: making sense of science in policy and politics. Cambridge: Cambridge University Press; 2007. 188p.

Prato T, Herath G. Multiple-criteria decision analysis for integrated catchment management. Ecol Econ. 2007;63(2-3):627-32.

Ritter A, Muñoz-Carpena R. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park. J Hydrol. 2006;317(3-4):340-54.

Rizzo G, Mazzilli SR, Ernst O, Baethgen WE, Berger AG. Season-specific management strategies for rainfed soybean in the South American Pampas based on a seasonal precipitation forecast. Agric Syst. 2022;196:103331. Doi: 10.1016/j.agsy.2021.103331.

Rose DC, Mukherjee N, Simmons BI, Tew ER, Robertson RJ, Vadrot ABM, Doubleday R, Sutherland WJ. Policy windows for the environment: tips for improving the uptake of scientific knowledge. Environ Sci Policy. 2020;113:47-54.

Ryan D. Strengthening links between science and governments for the development of public policies in Latin America. Policy Brief 2019 [Internet]. 2019 [cited 2023 Sep 4]. Available from: http://saras­institute.org/wp­content/uploads/2020/05/PolicyBrief_Ryan_2019.pdf

Saracho A, Navas R, Gamazo P, Alvareda E. Impact of irrigation and reservoirs on the flow regime of small agricultural basins. Paper presented at: AHS-AISH Scientific Assembly; 2022 May 29 - Jun 5; Montpellier, France.

Shunglu R, Köpke S, Kanoi L, Nissanka TS, Withanachchi CR, Gamage DU, Dissanayake HR, Kibaroglu A, Ünver O, Withanachchi SS. Barriers in participative water governance: a critical analysis of community development approaches. Water. 2022;14(5):762. Doi: 10.3390/w14050762.

Silveira L, Chreties C, Crisci M, Usera G, Alonso J. Sistema de alerta temprana para previsión de avenidas en la ciudad de Durazno. INNOTEC. 2015;(10):56-63. Doi: 10.26461/10.05.

Souto-Pérez A, Carriquiry MA, Navas R, Rosas F. Assessing the impact of agricultural intensification on water pollution: an integrated model assessment of the San Salvador Basin in Uruguay. Paper presented at: 2021 AAEA & WAEA Joint Annual Meeting; 2021 Aug 1-3; Austin Texas, US.

Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S. Sustainability: planetary boundaries: guiding human development on a changing planet. Science. 2015;347(6223):1259855. Doi: 10.1126/science.1259855.

Stosch K, Quilliam R, Bunnefeld N, Oliver D. Managing multiple catchment demands for sustainable water use and ecosystem service provision. Water. 2017;9(9):677. Doi: 10.3390/w9090677.

Stosch KC, Quilliam RS, Bunnefeld N, Oliver DM. Rapid characterisation of stakeholder networks in three catchments reveals contrasting land-water management issues. Land. 2022;11(12):2324. Doi: 10.3390/land11122324.

Thompson RM, Barbour EJ, Bradshaw CJA, Briggs S, Byron N, Grace M, Hart T, King AJ, Likens GE, Pollino CA, Sheldon F, Stewardson MJ, Thoms M, Watts RB, Webb JA. Principles for scientists working at the river science-policy interface. River Res Appl. 2022;38(5):819-31. Doi: 10.1002/rra.3951.

Trimble M, Torres PHC, Jacobi PR, Dias Tadeu N, Salvadores F, Mac Donnell L, Olivier T, Giordano G, dos Anjos LAP, Santana-Chaves IM, Pascual M, Mazzeo N, Jobbágy E. Towards adaptive water governance in South America: lessons from water crises in Argentina, Brazil, and Uruguay. In: Leal Filho W, Azeiteiro UM, Setti AFF, editors. Sustainability in natural resources management and land planning. Cham: Springer; 2021. pp. 31-46. Doi: 10.1007/978-3-030-76624-5_3.

Vilaseca F, Narbondo S, Chreties C, Castro A, Gorgoglione A. A comparison between lumped and distributed hydrological models for daily rainfall-runoff simulation. IOP Conf Ser Earth Environ Sci. 2021;958:012016. Doi: 10.1088/1755-1315/958/1/012016.

Voulvoulis N, Burgman MA. The contrasting roles of science and technology in environmental challenges. Crit Rev Environ Sci Technol. 2019;49:1079-106.

Xu H, Berres A, Liu Y, Allen-Dumas MR, Sanyal J. An overview of visualization and visual analytics applications in water resources management. Environ Model Softw. 2022;153:105396. Doi: 10.1016/j.envsoft.2022.105396.

Zhu JJ, Jiang J, Yang M, Ren ZJ. ChatGPT and Environmental Research. Environ Sci Technol. Forthcoming 2023. Doi: 10.1021/acs.est.3c01818.

Zurbriggen C, González-Lago M, Baraibar M, Baethgen W, Mazzeo N, Sierra M. Experimentation in the design of public policies: the Uruguayan soils conservation plans. Iberoam - Nord J Lat Am Caribb Stud. 2020;49(1):52-62.

Downloads

Published

2024-02-06

How to Cite

1.
Vervoort RW, Nervi E, Baethgen W. Integrated catchment models for policy development and decision making. Agrocienc Urug [Internet]. 2024 Feb. 6 [cited 2024 Apr. 27];27(NE1):e1194. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1194

Issue

Section

Integrated catchment management
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)