Antifibrotic Activity of Saussurea lappa Root Extract on CCl4-induced Liver Fibrosis in Rats

Farid A Badria*, Hassan R. Elsayed², Omar M Gabr², Mostafa M Abd-Elmonem¹

¹Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Egypt
²Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Egypt

*Corresponding Author: Farid A Badria, Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Egypt.

Natural products, their derivatives and traditional remedies have an uprising attention in drug discovery approaches [1-3]. Natural products are characterized by their structural diversity so; they could be utilized as biological function modifiers [4,5]. This open the door for the development of new technologies in discovering new drugs based on natural products’ screening, because they are a rich warehouse of bioactive compounds [5,6]. Yet, its poor aqueous solubility, inadequate permeability, and suboptimal bioavailability limited their uses. Therefore, several approaches have been developed to improve solubility, permeability and bioavailability of natural products [7,8].

Boswellia carterii is a plant native to India, Arabian, Red Sea region of North-East Africa (Somalia, Eritrea) and rich with oleogum resin with various biological activities. Badria, et al. have investigated the various therapeutic applications of Boswellia including anti-inflammatory [9-11], hepatoprotective [12], immunomodulatory [13], anti-ulcer [8], antiviral [14], and other biological activities [15].

Saussurea lappa C. B. Clarke (Asteraceae) is well known for its wide therapeutic uses in India. Singh, et al. [1] reviewed its chemistry (as shown in Figure 1), traditional uses and pharmacological activities such as its antioxidant, anti-inflammatory, and anti-cancer activities. The hepatoprotective activity of Saussurea lappa (Sl) root extract against D-galactosamine and lipopolysaccharide-induced acute liver hepatitis in mice had been reported [2]. However, there is no published work related to the role and mechanism of action of Sl in chronic hepatitis and liver fibrosis. This study was performed to evaluate the ability of Sl methanolic root extract to prevent liver fibrosis which represents a major health burden and is one of the most common cause of death worldwide.

Materials and Methods

Plant material and preparation of methanolic extract

Dried roots of Sl was purchased from a local herbalist and authenticated through a taxonomist, Dr. Nahed Waly at Faculty of Science, Cairo University, Egypt. Plant material was cleaned, ground to powder and extracted with 70% methanol in a container for 7 days. The extract was filtered, concentrated using a rotary evaporator and stored in a refrigerator at 4°C. The extract was dissolved in saline solution to obtain a concentration of 200 mg/ml.

Saussurea lappa Root Extract on CCl4-induced Liver Fibrosis in Rats

Intraperitoneal injection of 50% CCl4 (1 ml/kg) twice weekly for 8 weeks, significantly raised the levels of serum ALT, AST, liver MDA and percentage of collagen area and significantly decreased liver GSH as compared to the control group fed on basal diet only. Administration of Sl root extract to the rats in a daily dose of 400 mg/kg, concomitantly with CCl4, significantly prevented the CCl4-induced rise in plasma levels of ALT, AST, liver MDA and percentage of collagen area and increased liver GSH as compared to the CCl4-treated group. Moreover, liver histopathology in Sl-treated group showed relatively preserved architecture, less inflammatory cellular infiltration, less collagen deposition with less positive reaction in immunohistochemical staining for α-SMA, as compared to CCl4-treated group. These results explained the preventive effect of Sl root extract on liver fibrosis in rats, through antioxidant, anti-inflammatory activities and through prevention of hepatic stellate cell activation.

Keywords: Antifibrotic; Saussurea lappa; CCl4; Liver Fibrosis

Received: December 10, 2019
Published: January 08, 2020
© All rights are reserved by Farid A Badria, et al.
24hours. The solvent was then removed and fresh solvent was added to the plant material. The extraction method was repeated twice. It was filtered through filter paper and concentrated into thick semisolid viscous mass under reduced pressure on an evaporator, with a yield of 5% approximately.

Animals and chemicals

Female Sprague-Dawley rats (150-200gm) were obtained from the animal house of Mansoura University, Egypt and met the terms of the Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council [3]. Carbon tetrachloride, CCl4, was purchased from El-Gomhoria Co., (Egypt). Alanine transaminase (ALT) and aspartate transaminase (AST) estimation kits were purchased from Elitech, (UK). The reduced glutathione (GSH) and malondialdehyde (MDA) estimation kits were purchased from Biodiagnostickits, (Egypt).

Induction of liver fibrosis

Liver fibrosis was induced by intraperitoneal injection of CCl4 at dose of 1ml/kg dissolved in corn oil at 1:1 ratio twice weekly for 8 weeks [4].

Control animals were fed on basal diet only. Rats were sacrificed by cervical dislocation 3 days after the last injection of CCl4 administration. Blood samples, collected by direct cardiac puncture, into sterilized and heparinized syringes then centrifuged and plasma obtained was used for spectrophotometric estimation of ALT and AST [5]. Liver cutout and apportion was placed in 10% buffered formal saline. Liver tissue was then dehydrated through ascending concentrations of alcohol, cleared with xylene, impregnated and embedded in paraffin to form block.

Approximately 5μm sections were cut and fixed on glass slides, stained with hematoxylin and eosin, Sirius red stain and immune histochemical staining for alpha smooth muscle actin (α-SMA) for microscopic examination. Percentage of area occupied by collagen and collagen deposition, with fewer thinner septa and less positive reaction for α-SMA as compared to the CCl4-treated group (Table 1). Liver histopathology of Sl-treated group showed a decrease in liver distortion, inflammatory cell infiltration and collagen deposition, with fewer thinner septa and less positive reaction for α-SMA as compared to the CCl4-treated group (Table 1, Figure 1). The hepatoprotective effect of Sl root in prevention of chronic liver toxicity induced by CCl4 in rats, applying different techniques: histopathological, immunohistochemistry and measuring serum liver enzymes and hepatic oxidative stress marker levels.

Toxicity issue

According to the OECD-423 guidelines for acute oral toxicity, the LD50 dose of 2000 mg/kg and above for Sl root extract is categorized a sun-classified. 1/5 of the LD50, 400mg/kg was taken as dose for the evaluation of antifibrotic activity.

Hepatoprotective study

Animals were divided into three groups of six rats each. Group 1 (negative control) received basal diet. Group 2 (CCl4-treated) received intraperitoneal injection of CCl4 at dose of 1ml/kg dissolved in corn oil at 1:1 ratio twice weekly for 8 weeks. Group 3 (Sl-treated group) received both CCl4 as described in group 2, and Sl methanolic root extract via gastric tube in a dose of 400mg/kg daily for 8 weeks.

Statistical analysis

Serum ALT and AST, liver MDA and GSH, percentage of area occupied by collagen tissue were all presented as mean and standard deviation and the mean of two groups were compared by the independent samiple-test. P-value of <0.05 was considered as significant.

Results and Discussion

CCl4-induced liver fibrosis in rat is a commonly used model. CCl4, the toxic metabolite of CCl3, binds to lipoprotein causing lipid peroxidation, Rupfer cell activation and initiation of an inflammatory response [6]. Yaeesh., et al. [2] were the first one to report the hepatoprotective activity of Sl root extract against acute hepatitis induced by injection of D-galactosamine (D-GaIn) and lipopolysaccharide in mice. In addition, the present study evaluated the efficacy of Sl root extract in prevention of chronic liver toxicity induced by CCl4 in rats, applying different techniques: histopathological, immunohistochemistry and measuring serum liver enzymes and hepatic oxidative stress marker levels.

In our study, Sl-treated group showed significant decrease in serum ALT and AST, liver MDA and in the area occupied by collagen with significant increase in liver GSH as compared to the CCl4-treated group (Table 1). Liver histopathology of Sl-treated group showed a decrease in liver distortion, inflammatory cell infiltration, with fewer thinner septa and less positive reaction for α-SMA as compared to the CCl4-treated group (Table 1, Figure 1). The hepatoprotective effect of Sl root, in our results, may be due to its antioxidant activity against CCl4-induced oxidative stress, a major contributor to the liver fibrosis cascade. This antioxidant effect was confirmed by the significant decrease in liver MDA with significant increase in liver GSH in Sl-treated group as compared to CCl4-treated group. In addition, an anti-inflammatory activity of Sl was proved by the decrease in the inflammatory cell infiltration seen in H and E stained sections, parallel to the results of Matsuda., et al. [7] who reported the inhibitory effect of Sl root on expression of macro phages, TNF-α and NO which drive the hepatic inflammation. Moreover, the diminished α-SMA immune histochemical positive reaction means a reduction in the number of hepatic myofibroblasts.

Citation: Farid A Badria., et al. "Antifibrotic Activity of Saussurea lappa Root Extract on CCl4-induced Liver Fibrosis in Rats". Acta Scientific Nutritional Health 4.2 (2020): 01-04.
Table 1: Effect of *Saussurea lappa* root extract on CCl4-induced change in liver enzymes, oxidative stress markers and percent age of liver collagen area.

<table>
<thead>
<tr>
<th>Serum ALT (U/L)</th>
<th>Serum AST (U/L)</th>
<th>Liver MDA (nmol/gm)</th>
<th>Liver GSH (umol/gm)</th>
<th>Percentage of collagen area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group1: negative control</td>
<td>24 ± 5.29</td>
<td>118.17 ± 13.73</td>
<td>8.47 ± 1.09</td>
<td>1.51 ± 0.09</td>
</tr>
<tr>
<td>Group2: CCl4 fibrosis model</td>
<td>76.5 ± 6.47*</td>
<td>283.33 ± 20.06*</td>
<td>18.16 ± 0.52*</td>
<td>0.57 ± 0.05*</td>
</tr>
<tr>
<td>Group3: CCl4 + Sl root extract</td>
<td>39.17 ± 5.12#</td>
<td>187.83 ± 19.69#</td>
<td>11.8 ± 0.81#</td>
<td>1.11 ± 0.17#</td>
</tr>
</tbody>
</table>

*: p< 0.05; group1 versus2
#: p< 0.05; group2 versus3

Values represent mean ± standard deviation

Conclusion

This may result from prevention of HSCs activation by the antioxidant and anti-inflammatory effects of Slor loss of those cells after activation. This loss is probably through apoptosis correlated to the results of Kim, *et al.* [8] who reported an apoptotic effect of dehydrocostus lactone, extracted from Sl root, against cancer cells.

Acknowledgments

I wish to express my gratitude to Prof. Dr. Nahed Waly, Professor of Plant Taxonomy at Faculty of Science, Cairo University, Egypt, for her valuable help and sincere guidance.

Bibliography

Citation: Farid A Badria, *et al.* "Antifibrotic Activity of *Saussurea lappa* Root Extract on CCl4-induced Liver Fibrosis in Rats". *Acta Scientific Nutritional Health* 4.2 (2020): 01-04.
Antifibrotic Activity of *Saussurea lappa* Root Extract on CCl4-induced Liver Fibrosis in Rats

Assets from publication with us

- Prompt Acknowledgement after receiving the article
- Thorough Double blinded peer review
- Rapid Publication
- Issue of Publication Certificate
- High visibility of your Published work

Website: https://www.actascientific.com/

Submit Article: https://www.actascientific.com/submission.php

Email us: editor@actascientific.com

Contact us: +91 9182824667

Citation: Farid A Badria., et al. "Antifibrotic Activity of *Saussurea lappa* Root Extract on CCl4-induced Liver Fibrosis in Rats". *Acta Scientific Nutritional Health* 4.2 (2020): 01-04.