Skip to main content
Log in

Ellipsometric Method of Substrate Temperature Measurement in Low-Temperature Processes of Epitaxy of InSb Layers

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The present study is aimed at solving the problem of in situ thermometry of lowtemperature processes of molecular beam epitaxy of indium antimonide. A spectral ellipsometric method for measuring the temperature of InSb epitaxial layers is proposed. The method is based on the temperature dependence of the energy positions of the critical points. The spectra of ellipsometric parameters of the material in the temperature range from 25 to 270 °C are measured. The analysis of these spectra shows that the most temperature-sensitive parameters are the spectral positions of the peaks of the ellipsometric parameter, which are manifested near the critical points E1 and E1 + Δ1. It is found that the dependences of the peak positions on temperature in the above-mentioned temperature range are linear functions with the slope factors of 0.21 and 0.10 nm/°C, respectively. These factors determine the sensitivity of the method and ensure the temperature measurement accuracy within 2–3 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer Academic Publishers, Boston, 1999).

    Book  Google Scholar 

  2. P. C. Klipstein, U. Mizrahi, R. Fraenkel, and I. Shtrichman, “Status of Cooled and Uncooled Infrared Detectors at SCD,” Def. Sci. J. 63 (6), 555–570 (2013).

    Article  Google Scholar 

  3. I. D. Burlakov, K. O. Boltar’, A. E. Mirofyanchenko, et al., “Investigation of InSb Structures Grown by the Method of Molecular Beam Epitaxy,” Usp. Prikl. Fiz. 3 (6), 559–565 (2015).

    Google Scholar 

  4. A. K. Bakarov, A. K. Gutakovskii, K. S. Zhuravlev, et al., “Matrix Photodetector Devices Based on InSb Layers Grown by the Method of Molecular Beam Epitaxy,” Zh. Tekh. Fiz. 87 (6), 900–904 (2017).

    Google Scholar 

  5. Temperature Measurements: Reference Book, Ed. by O. A. Gerashchenko, A. N. Gordov, A. K. Eremina, et al. (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  6. C. McConville, T. Jones, F. Leibsle, et al., “Surface Reconstructions of InSb(100) Observed by Scanning Tunneling Microscopy,” Phys. Rev. B. 50, 14965–14976 (1994).

    Article  ADS  Google Scholar 

  7. Radiometric Temperature Measurements. II. Applications, Ed. by Zh. Zhang, B. Tsai, and G. Machin (Elsevier, Amsterdam, 2010).

  8. I. A. Azarov, V. A. Shvets, S. A. Dulin, et al., “Polarization Pyrometry of Layered Semiconductor Structures under Conditions of Low-Temperature Technological Processes,” Avtometriya 53 (6), 111–120 (2017) [Optoelectron., Instrum. Data Process. 53 (6), 630–638 (2017)].

    Google Scholar 

  9. M. Wakagi, B. G. Hong, H. V. Nguyen, et al., “Characterization of Substrate Temperature and Damage in Diamond Growth Plasmas by Multichannel Spectroellipsometry,” J. Vac. Sci. Technol. A 13 (4), 1917–1923 (1995).

    Article  ADS  Google Scholar 

  10. T. Tomita, T. Kinosada, T. Yamashita, et al., “A New Non-Contact Method to Measure Temperature of Surface of Semiconductor Wafers,” Jap. J. Appl. Phys. 25 (11), L925–L927 (1986).

    Article  Google Scholar 

  11. E. V. Spesivtsev, S. V. Rykhlitskii, and V. A. Shvets, “Development of Methods and Instruments for Optical Ellipsometry at the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences,” Avtometriya 47 (5), 5–12 (2011) [Optoelectron., Instrum. Data Process. 47 (5), 419–425 (2017)].

    Google Scholar 

  12. G. Yu. Sidorov, V. A. Shvets, Yu. G. Sidorov, and V. S. Varavin, “Dynamics of Growth of the Native Oxide of CdxHg1–xTe,” Avtometriya 53 (6), 97–105 (2017) [Optoelectron., Instrum. Data Process. 53 (6), 617–624 (2017)].

    Google Scholar 

  13. E. V. Spesivtsev, S. V. Rykhlitsky, V. A. Shvets, et al., “Time-Resolved Microellipsometry for Rapid Thermal Processes Monitoring,” Thin Sol. Films 455–456, 700–704 (2004).

    Google Scholar 

  14. A. S. Mardezhov, N. N. Mikhailov, and V. A. Shvets, “Ellipsometric Monitoring of Pre-Epitaxial Preparation of GaAs Substrates and Growing of Epitaxial CdTe Films, Poverkhnost’, No. 12, 92–96 (1990).

    Google Scholar 

  15. V. A. Shvets, I. A. Azarov, E. V. Spesivtsev, et al., “Methodical and Instrumental Problems of High-Accuracy Ellipsometric in Situ Diagnostics of the Composition of Mercury–Cadmium–Tellurium Layers in the Molecular Beam Epitaxy Technology,” PTE, No. 6, 87–94 (2016).

    Google Scholar 

  16. S. Adachi, “Model Dielectric Constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B 35 (14), 7454–7463 (1987).

    Article  ADS  Google Scholar 

  17. S. Adachi and T. Miyazaki, “Ellipsometric and Thermoreflectance Spectra of Epitaxial InSb Films,” Phys. Rev. B 51 (20), 14317–14323 (1995).

    Article  ADS  Google Scholar 

  18. A. B. Djurišić, E. H. Li, D. Rakić, and M. L. Majewski, “Modelling the Optical Properties of AlSb, GaSb, and InSb,” Appl. Phys. A 70 (1), 29–32 (2000).

    Article  ADS  Google Scholar 

  19. T. Miyazaki and S. Adachi, “Model Dielectric Constants of InSb,” Phys. Stat. Sol. B 163 (1), 299–310 (1991).

    Article  ADS  Google Scholar 

  20. T. Miyazaki and S. Adachi, “Analysis of Optical Constants for Sputter-Deposited InSb Films Based on the Interband-Transition Model,” Jap. J. Appl. Phys. 31 (4), 979–983 (1992).

    Article  ADS  Google Scholar 

  21. S. Ohkubo, K. Aoki, and D. Eto, “Temperature Dependence of Optical Constants for InSb Films Including Molten Phases,” Appl. Phys. Lett. 92 (1), 011919 (2008).

    Article  ADS  Google Scholar 

  22. S. Logothetidis, L. Vina, and M. Cardona, “Temperature Dependence of the Dielectric Function and the Interband Critical Points of InSb,” Phys. Rev. 31 (2), 947–957 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shvets.

Additional information

Russian Text © V.A. Shvets, I.A. Azarov, S.V. Rykhlitskii, A.I. Toropov, 2019, published in Avtometriya, 2019, Vol. 55, No. 1, pp. 12–20.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvets, V.A., Azarov, I.A., Rykhlitskii, S.V. et al. Ellipsometric Method of Substrate Temperature Measurement in Low-Temperature Processes of Epitaxy of InSb Layers. Optoelectron.Instrument.Proc. 55, 8–15 (2019). https://doi.org/10.3103/S8756699019010023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019010023

Keywords

Navigation