Skip to main content
Log in

On Monsoon Features of Atmospheric Circulation over the Barents Sea

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Based on the analysis of seasonal changes in prevailing wind, S.P. Khromov proposed in 1957 that the atmospheric circulation over the Barents and Kara seas has monsoon features. The ЕRА-Interim reanalysis is used to study seasonal changes in atmospheric circulation types over the Barents Sea during 1979–2018. The monsoon features of circulation (airflows from the land to the sea) in winter are observed only when the positive phase of the North Atlantic Circulation dominates. In summer, the manifestation of the monsoon pattern (air flows from the sea to the land) is associated with the zone of cyclone regeneration over the Kara and Laptev seas: the cyclones become stationary, and southward flows over the Barents Sea become a rather stable circulation feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Yu. Bardin, T. V. Platova, and O. F. Samokhina, “Specific Features of Cyclone Activity Variability in Northern Hemisphere Mid-latitudes Associated with Leading Atmospheric Circulation Modes in the Atlantic-European Sector,” Fundamental’naya i Prikladnaya Klimatologiya, No. 2 (2015) [in Russian].

  2. A. V. Kislov, G. V. Surkova, and V. S. Arkhipkin, “Occurence Frequency of Storm Wind Waves in the Baltic, Black, and Caspian Seas under Changing Climate Conditions,” Meteorol. Gidrol., No. 2 (2016) [Russ. Meteorol. Hydrol., No. 2, 41 (2016)].

  3. Climate Atlas of the USSR (Glavnoe Upravlenie Gidrometeorologicheskoi Sluzhby pri Sovete Ministrov SSSR, Moscow, 1960) [in Russian].

  4. V. N. Kryjov and O. V. Gorelits, “Wintertime Arctic Oscillation and Formation of River Spring Floods in the Barents Sea Basin,” Meteorol. Gidrol., No. 3 (2019) [Russ. Meteorol. Hydrol., No. 3, 44 (2019)].

  5. I. I. Mokhov, “Modern Climate Change in the Arctic,” Vestnik Rossiiskoi Akademii Nauk, No. 5–6, 85 (2015) [in Russian].

  6. M. A. Petrosyants, “Development of Monsoon Concepts of S.P. Khromov,” Vestnik Moskovskogo Universiteta, Ser. 5: Geografiya, No. 5 (1985) [in Russian].

  7. V. V. Popova, “Modern Climate Change in Northern Eurasia as a Manifestation of Variations in Large-scale Atmospheric Circulation,” Fundamental’naya i Prikladnaya Klimatologiya, No. 1 (2018) [in Russian].

  8. V. V. Popova, “Modern Changes in Surface Air Temperature in Northern Eurasia: Regional Trends and Contribution of Atmospheric CIrculation,” Izv. Akad. Nauk, Ser. Geografiya, No. 6 (2009) [in Russian].

  9. C. S. Ramage, Monsoon Meteorology (Gidrometeoizdat, Leningrad, 1976) [Transl. from English].

  10. E. K. Semenov and O. G. Kornyushin, Atlas of Tropospheric and Lower Stratospheric Characteristics in the Tropical Zone (Gidrometeoizdat, Moscow, 1988).

  11. E. K. Semenov, N. N. Sokolikhina, K. O. Tudrii, and M. V. Shchenin, “Synoptic Mechanisms of Winter Warming in the Arctic,” Meteorol. Gidrol., No. 9 (2015) [Russ. Meteorol. Hydrol., No. 9, 40 (2015)].

  12. G. V. Surkova and A. A. Krylov, “Synoptic Conditions Favoring Formation of Wind Speed Extremes in the Barents Sea,” Vestnik Moskovskogo Universiteta, Ser. 5: Geografiya, No. 6 (2016) [in Russian].

  13. Physiographic Atlas of the Globe (Moscow, 1964) [in Russian], http://www.atlassen.info/atlassen/russisch/fzgat01/picsxl/fzgat1964k040041.jpg.

  14. S. P. Khromov, “Geographic Distribution of Monsoons,” Izv. Vsesoyuznogo Geograficheskogo Obshchestva, No. 1, 89 (1957) [in Russian].

  15. M. Akperov, A. Rinke, I. I. Mokhov, H. Matthes, V. A. Semenov, M. Adakudlu, J. Cassano, J. H. Christensen, M. A. Dembitskaya, K. Dethloff, X. Fettweis, J. Glisan, O. Gutjahr, G. Heinemann T., Koenigk, N. V. Koldunov, R. Laprise, R. Mottram, O. Nikiema, J. F. Scinocca, D. Sein, S. Sobolowski, K. Winger, and W. Zhang, “Cyclone Activity in the Arctic from an Ensemble of Regional Climate Models (Arctic CORDEX),” J. Geophys. Res. Atmos., 123 (2018).

  16. H. W. Chen, Q. Zhang, H. Kornich, and D. Chen, “A Robust Mode of Climate Variability in the Arctic: The Barents Oscillation,” Geophys. Res. Lett., 40 (2013).

  17. J. Cohen, J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland, and J. Jones, “Recent Arctic Amplification and Extreme Mid-latitude Weather,” Nature Geosci., 7 (2014).

  18. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thepaut, and F. Vitart, “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., No. 656, 137 (2011).

  19. C. K. Folland, J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, “The Summer North Atlantic Oscillation: Past, Present and Future,” J. Climate, 22 (2009).

  20. J. Hanley and R. Caballero, “Objective Identification and Tracking of Multicentre Cyclones in the ERA-Interim Reanalysis Dataset,” Quart. J. Roy. Meteorol. Soc., 138 (2012).

  21. B. J. Hoskins and P. J. Valdes, “On the Existence of Stormtracks,” J. Atmos. Sci., 47 (1990).

  22. P. D. Jones, C. Harpham, and K. R. Briffa, “Lamb Weather Types Derived from Reanalysis Products,” Int. J. Climatol., 33 (2012).

  23. P. D. Jones, M. Hulme, and K. R. Briffa, “A Comparison of Lamb Circulation Types with an Objective Classification Scheme,” Int. J. Climatol., 13 (1993).

  24. A. Kislov and T. Matveeva, “An Extreme Value Analysis of Wind Speed over the European and Siberian Parts of Arctic Region,” Atmos. Climate Sci., 6 (2016).

  25. V. N. Kryjov, “October Circulation Precursors of the Wintertime Arctic Oscillation,” Int. J. Climatol., 35 (2015).

  26. G. J. Marshall, R. M. Vignols, and W. G. Rees, “Climate Change in the Kola Peninsula, Arctic Russia, during the Last 50 Years from Meteorological Observations,” J. Climate, 29 (2016).

  27. F. Pithan and T. Mauritsen, “Arctic Amplification Dominated by Temperature Feedbacks in Contemporary Climate Models,” Nature Geosci., 7 (2014).

  28. P. Schlichtholz, “Local Wintertime Tropospheric Response to Oceanic Heat Anomalies in the Nordic Seas Area,” J. Climate, 27 (2014).

  29. M. C. Serreze, A. P. Barrett, and J. J. Cassano, “Circulation and Surface Controls on the Lower Tropospheric Air Temperature Field of the Arctic,” J. Geophys. Res., 116 (2011).

  30. M. C. Serreze and R. G. Barry, “Processes and Impacts of Arctic Amplification: A Research Synthesis,” Global Planet. Change, 77 (2011).

  31. T. A. Shaw, M. Baldwin, E. A. Barnes, R. Caballero, C. I. Garfinkel, Y.-T. Hwang C., Li, P. A. O’Gorman, G. Riviere, I. R. Simpson, and A. Voigt, “Storm Track Processes and the Opposing Influences of Climate Change,” Nature Geosci., 9 (2016).

  32. D. W. J. Thompson and J. M. Wallace, “The Arctic Oscillation Signature in Wintertime Geopotential Height and Temperature Fields,” Geophys. Res. Lett., 25 (1998).

  33. N. D. Tilinina, S. K. Gulev, I. Rudeva, and P. Koltermann, “Comparing Cyclone Life Cycle Characteristics and Their Interannual Variability in Different Reanalyses,” J. Climate, 26 (2013).

  34. K. E. Trenberth, D. P. Stepaniak, and J. M. Caron, “The Global Monsoon as Seen through the Divergent Atmospheric Circulation,” J. Climate, 13 (2000).

  35. B. Wang and Q. Ding, “Global Monsoon: Dominant Mode of Annual Variation in the Tropics,” Dynam. Atmos. Oceans, 44 (2008).

  36. P. J. Webster, V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, “Monsoons: Processes, Predictability, and the Prospects for Prediction,” J. Geophys. Res., 103 (1998).

  37. T. Weusthoff, “Weather Type Classification at MeteoSwiss—Introduction of New Automatic Classifications Schemes,” Arbeitsberichte der MeteoSchweiz, 235 (2011).

  38. K. Ye, R. Wu, and Y. Liu, “Interdecadal Changes of Eurasian Snow, Surface Temperature and Atmospheric Circulation in the Late 1980s,” J. Geophys. Res. Atmos., 120 (2015).

Download references

Funding

The research was supported by the Russian Foundation for Basic Research (grant 18-05-60147) and was performed in the framework of the State Assignment (theme АААА-А16-116032810086-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kislov.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 11, pp. 24-35.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, A.V., Matveeva, T.A. On Monsoon Features of Atmospheric Circulation over the Barents Sea. Russ. Meteorol. Hydrol. 45, 762–770 (2020). https://doi.org/10.3103/S1068373920110023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373920110023

Keywords

Navigation