Skip to main content
Log in

Periodic Orthonormal Spline Systems with Arbitrary Knots as Bases in \(\boldsymbol{H}^{\mathbf{1}}\boldsymbol{(\mathbb{T})}\)

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

We give a simple geometric characterization of sequences of knots for which the corresponding periodic orthonormal spline system of order \(k\) is a basis in the atomic Hardy space on the torus \(\mathbb{T}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. C. de Boor, ‘‘On the convergence of odd-degree spline interpolation,’’ J. Approx. Theory 1, 452–463 (1968). https://doi.org/10.1016/0021-9045(68)90033-6

    Article  MathSciNet  MATH  Google Scholar 

  2. C. de Boor, ‘‘The quasi-interpolant as a tool in elementary polynomial spline theory,’’ in Approximation Theory (Academic Press, New York, 1973), pp. 269–276.

    MATH  Google Scholar 

  3. C. de Boor, ‘‘On a max-norm bound for the least-squares spline approximant,’’ in Approximation and Function Spaces (Gda’nsk, 1979; North-Holland, Amsterdam, 1981), pp. 163–175.

  4. Z. Ciesielski, ‘‘Properties of the orthonormal Franklin system,’’ Stud. Math. 23, 141–157 (1963). https://doi.org/10.4064/sm-23-2-141-157

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Ciesielski, ‘‘Properties of the orthonormal Franklin system, II,’’ Stud. Math. 27, 289–323 (1966). https://doi.org/10.4064/sm-27-3-289-323

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Ciesielski, ‘‘Orthogonal projections onto spline spaces with arbitrary knots,’’ in Function Spaces (Poznan, 1998; Dekker, New York, 2000), pp. 133–140.

  7. R. R. Coifman and G. Weiss, ‘‘Extensions of Hardy spaces and their use in analysis,’’ Bull. Am. Math. Soc. 83, 569–645 (1977). https://doi.org/10.1090/S0002-9904-1977-14325-5

    Article  MathSciNet  MATH  Google Scholar 

  8. R. A. DeVore and G. G. Lorentz, Constructive Approximation (Springer, 1993).

  9. J. Domsta, ’’Theorem on B-splines,’’ Stud. Math. 41, 291–314 (1972). https://doi.org/10.4064/sm-41-3-291-314

    Article  MathSciNet  MATH  Google Scholar 

  10. G. G. Gevorkyan and A. Kamont, ‘‘Unconditionality of general Franklin systems in \(L^{p}[0,1]\), \(1<p<\infty\),’’ Stud. Math. 164, 161–204 (2004). https://doi.org/10.4064/sm164-2-4

    Article  MathSciNet  MATH  Google Scholar 

  11. G. G. Gevorkyan and A. Kamont, ‘‘General Franklin systems as bases in \(H^{1}[0,1]\),’’ Stud. Math. 167, 259–292 (2005). https://doi.org/10.4064/sm167-3-7

    Article  MathSciNet  MATH  Google Scholar 

  12. G. G. Gevorkyan and A. Kamont, ‘‘Orthonormal spline systems with arbitrary knots as bases in \(H^{1}[0,1]\),’’ East J. Approx. 14, 161–182 (2008).

    MathSciNet  MATH  Google Scholar 

  13. G. Gevorkyan, A. Kamont, K. Keryan, and M. Passenbrunner, ‘‘Unconditionality of orthogonal spline systems in \(H^{1}\),’’ Stud. Math. 226 (2), 123–154 (2015). https://doi.org/10.4064/sm226-2-2

    Article  MathSciNet  MATH  Google Scholar 

  14. B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. Math. Monogr., Vol. 75 (Amer. Math. Soc., Providence, R.I., 1989).

  15. K. Keryan, ‘‘Unconditionality of general periodic spline systems in \(L^{p}[0,1]\), \(1<p<\infty\),’’ J. Contemp. Math. Anal. 40, 13–55 (2005).

    MathSciNet  Google Scholar 

  16. K. Keryan and M. Passenbrunner, ‘‘Unconditionality of periodic orthonormal spline systems in \(L^{p}\),’’ Stud. Math. 248 (1), 57–91 (2019). https://doi.org/10.4064/sm171011-28-3

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Passenbrunner, ‘‘Unconditionality of orthogonal spline systems in \(L^{p}\),’’ Stud. Math. 222, 51–86 (2014). https://doi.org/10.4064/sm222-1-5

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Passenbrunner, ‘‘Orthogonal projectors onto spaces of periodic splines,’’ J. Complexity 42, 85–93 (2017). https://doi.org/10.1016/j.jco.2017.04.001

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Passenbrunner and A. Shadrin, ‘‘On almost everywhere convergence of orthogonal spline projections with arbitrary knots,’’ J. Approx. Theory 180, 77–89 (2014). https://doi.org/10.1016/j.jat.2013.12.004

    Article  MathSciNet  MATH  Google Scholar 

  20. M. P. Poghosyan and K. A. Keryan, ‘‘General periodic Franklin system as a basis in \(H^{1}[0,1]\),’’ J. Contemp. Math. Anal. 40 (1), 56 (2005).

    MathSciNet  MATH  Google Scholar 

  21. A. Yu. Shadrin, ‘‘The \(L_{\infty}\)-norm of the \(L_{2}\)-spline projector is bounded independently of the knot sequence: A proof of de Boor’s conjecture,’’ Acta Math. 187, 59–137 (2001). https://doi.org/10.1007/BF02392832

    Article  MathSciNet  MATH  Google Scholar 

  22. M. v. Golitschek, ‘‘On the \(L^{\infty}\)-norm of the orthogonal projector onto splines. A short proof of A. Shadrin’s theorem,’’ J. Approx. Theory 181, 30–42 (2014). https://doi.org/10.1016/j.jat.2014.02.001

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The second author was supported by the Science Committee of RA, in the frames of the research project no. 21T-1A055.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Hakobyan or K. Keryan.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakobyan, L., Keryan, K. Periodic Orthonormal Spline Systems with Arbitrary Knots as Bases in \(\boldsymbol{H}^{\mathbf{1}}\boldsymbol{(\mathbb{T})}\). J. Contemp. Mathemat. Anal. 58, 33–42 (2023). https://doi.org/10.3103/S106836232301003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106836232301003X

Keywords:

Navigation