Skip to main content
Log in

Modeling of Heat Propagation Processes in Detection Pixel of Thermoelectric Single-Photon Detector with High-Temperature Superconducting Absorber

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The processes of heat propagation in five-layer detection pixels of the thermoelectric single-photon detector after absorption of 0.8–1000 eV energy photons are investigated by the method of computer simulation. Design of the detection pixel consisting of successive layers on a sapphire substrate of heat sink Bi2223, thermoelectric sensor CeB6, absorber Bi2223, and the antireflection layer SiO2 is proposed. The computer modelling was carried out based on the equation of heat propagation from the limited volume by the use of the three-dimensional matrix method for differential equations. Temporal dependences of the signal intensity for different thicknesses of the layers of the detection pixel are determined. It is shown that the detection pixel SiO2/Bi2223/CeB6/Bi2223/Al2O3 can register single photons in a wide spectral range from near-IR to X-ray, as well as count the number of simultaneously absorbed photons up to eight. The use of Bi2223 high-temperature superconductor in the design of the detection pixel provides a gigahertz count rate and high system detection efficiency. The simple design of the detection pixel is a prerequisite for the creation of multi-pixel sensors. A detector with such characteristics could be representative of the next generation single-photon detectors in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Chunnilall, C.J., Degiovanni, I.P., Kück, S., Müller, I., and Sinclair, A.G., Optical Engineering, 2014, vol. 53, no. 8, p. 081910.

    Article  ADS  Google Scholar 

  2. Hadfield, R.H., Nature Photonics, 2009, vol. 3, p. 696.

    Article  ADS  Google Scholar 

  3. Zadeh, I.E. Chang, J., Los, J.W.N., Gyger, S., Elshaari, A.W., Steinhauer, S., Dorenbos, S.N., and Zwiller, V., Appl. Phys. Lett., 2021, vol. 118, p. 190502.

    Article  Google Scholar 

  4. Zhu, D., Zhao, Q-Y., Choi, H., Lu, T-J., Dane, A.E., Englund, D., and Berggren, K.K., Nat. Nanotechnol., 2018, vol. 13, p. 596.

    Article  ADS  Google Scholar 

  5. van Vechten, D., Wood, K., Fritz, G., Horwitz, J., Gyulamiryan, A., Kuzanyan, A., Vartanyan, V., and Gulian, A., Nucl. Instrum. Methods Phys. Res., 2000, vol. 444, p. 42.

    Article  ADS  Google Scholar 

  6. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys., 2018, vol. 53, p. 73.

    Article  Google Scholar 

  7. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., IEEE Sens., J., 2019, vol. 20, no. 6, p. 3040.

    Article  ADS  Google Scholar 

  8. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., IEEE Sens., J., 2020, vol. 20, no. 21, p. 12776.

    Article  ADS  Google Scholar 

  9. Li, M., Shen, H., Zhuang, L., Chen, D., and Liang, X., Int. J. Photoenergy., 2014, vol. 2014, p. 670438.

    Google Scholar 

  10. Carini Jr., G., Carini, G., Cosio, D., D’Angelo, G., and Rossi, F., Philos. Mag., 2016, vol. 96, no. 7–9, p. 761.

    Article  ADS  Google Scholar 

  11. Asheghi, M. et al., https://nanoheat.stanford.edu/sites/default/files/publications/A33.pdf.

  12. Yang, X. and Chaki, T.K., Supercond. Sci. Technol., 1993, vol. 6, p. 343.

    Article  ADS  Google Scholar 

  13. Fisher, R.A., Kim, S., Lacy, S.E., Philips, N.E., Morris, D.E., Markelz, A.G., Wei, J.Y.T., and Ginley, D.S., Phys. Rev. B, 1988, vol. 38, no. 16, p. 11942.

    Article  ADS  Google Scholar 

  14. Ikebe, M., Fujishiro, H., Naito, T., and Noto, K., J. Phys. Soc. Jpn., 1994, vol. 63, p. 3107.

    Article  ADS  Google Scholar 

  15. Furukawar, G.T., Douglasr, T.B., McCoskeyr, R.E., and Ginnings, D.C., J. Res. Nat. Bur. Stand., 1956, vol. 57, p. 67.

    Article  Google Scholar 

  16. Scheie, A., http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/Allen_Scheie_FinalReport.pdf.

  17. Peysson, Y., Ayache, C., Salce, B., Rossat-Mignod, J., Kunii, S., and Kasuya, T., J. Magn. Magn. Mater., 1985, vol. 47, p. 63.

    Article  ADS  Google Scholar 

  18. Peysson, Y., Ayache, C., and Salce, B., J. Magn. Magn. Mater., 1986, vol. 59, p. 33.

    Article  ADS  Google Scholar 

  19. Petrosyan, V., J. Contemp. Phys., 2011, vol. 46, p. 125.

    Article  Google Scholar 

  20. Kim, J., Takeuchi, S., Yamamoto, Y., and Hogue, H.H., Appl. Phys. Lett., 1999, vol. 74, p. 902.

    Article  ADS  Google Scholar 

  21. Cabrera, B., Clarke, R.M., Colling, P., Miller, A.J., Nam, S., and Romani, R.W., Appl. Phys. Lett., 1998, vol. 73, p. 735.

    Article  ADS  Google Scholar 

  22. Peacock, A., Verhoeve, P., Rando, N., van Dordrecht, A., Taylor, B.G., Erd, C., Perryman, M.A.C., Venn, R. Howlett, J., Goldie, D.J., Lumley, J., and Wallis, M., Nature, 1996, vol. 381, p. 135.

    Article  ADS  Google Scholar 

  23. Yamashita, T., Miki, S., and Terai, H., IEICE Trans. Electron., 2017, vol. E100-C, p. 274.

    Article  ADS  Google Scholar 

  24. Kok, P. and Braunstein, S.L., Phys. Rev. A, 2001, vol. 63, p. 033812.

    Article  ADS  Google Scholar 

  25. Jiang, L.A., Dauler, E.A., and Chang, J.T., Phys. Rev. A, 2007, vol. 75, p. 062325.

    Article  ADS  Google Scholar 

  26. Fitch, M.J., Jacobs, B.C., Pittman, T.B., and Franson, J.D., Phys. Rev. A, 2003, vol. 68, p. 043814.

    Article  ADS  Google Scholar 

  27. Achilles, D., Silberhorn, C., Sliwa, C., Banaszek, K., and Walmsley, I.A., Opt. Lett., 2003, vol. 28, p. 2387.

    Article  ADS  Google Scholar 

  28. Dauler, E.A., Kerman, A.J., Robinson, B.S., Yang, J.K.W., Voronov, B., Goltsman, G., Hamilton, S.A., and Berggren, K.K., J. Mod. Opt., 2009, vol. 56, no. 2–3, p. 364.

    Article  ADS  Google Scholar 

  29. Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., and Nam, S.W., Nat. Photon., 2013, vol. 7, p. 210.

    Article  ADS  Google Scholar 

  30. Caloz, M., Perrenoud, M., Autebert, C., Korzh, B., Weiss, M., Schönenberger, C., Warburton, R.J., Zbinden, H., and Bussières, F., Appl. Phys. Lett., 2018, vol. 112, p. 061103.

    Article  ADS  Google Scholar 

  31. Kuzanyan, A.A., Petrosyan, S.I., Kuzanyan, A.S., and Badalyan, G.R., J. Contemp. Phys., 2020, vol. 55, no. 4, p. 365.

    Article  Google Scholar 

  32. Grigoryan, L., Yakushi, K., Liu, C.-J., Takano, S., Wakata, M., and Yamauchi, H., Physica C, 1993, vol 218, p. 153.

    Article  ADS  Google Scholar 

  33. Nyquist, H., Phys. Rev., 1928, vol. 32, p. 110.

    Article  ADS  Google Scholar 

  34. Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys., 1988, vol. 27, p. L209.

    Article  ADS  Google Scholar 

  35. Kuzanyan, A.S., Harutyunyan, S.R., Vardanyan, V.O., and Badalyan, G.R., J. Solid State Chem., 2006, vol. 179, no. 9, p. 2862.

    Article  ADS  Google Scholar 

  36. Kuzanyan, A.S., Badalyan, G.R., Nikoghosyan, V.R., and Gyulamiryan, A.L., IEEE Trans. Appl. Supercond., 2001, vol. 11, no. 1, p. 3852.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.M. Gulian for his interest in the work and useful discussions.

Funding

This work was supported by the Science Committee of RA, in the frames of the research project No. 21T-1C088 “Sensor development of the thermoelectric single-photon detector for UV radiation taking into account thermal noise” and Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [DI-18-479/Development of advanced bismuth-based superconducting materials via doping and high-energy ball-milling].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuzanyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A.S. Kuzanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.A., Nikoghosyan, V.R., Margiani, N.G. et al. Modeling of Heat Propagation Processes in Detection Pixel of Thermoelectric Single-Photon Detector with High-Temperature Superconducting Absorber. J. Contemp. Phys. 57, 174–181 (2022). https://doi.org/10.3103/S1068337222020141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337222020141

Keywords:

Navigation