Skip to main content
Log in

Study of 7Be Formation from Oxygen Nuclei by Bremsstrahlung Photons at \(E_{\gamma }^{{\max }}\) = 40 and 70 MeV

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Using the induced activity method, the inclusive process 16O(γ, X)7Be of the 7Ве isotope photoproduction from oxygen nuclei was studied at the linear electron accelerator AANL (YerPhI) at the boundary energies of bremsstrahlung photons \(E_{\gamma }^{{\max }}\) = 40 and 70 MeV. This process was first observed in the near-threshold energy range Eγ < 40 MeV in this work owing to low-background conditions in the underground laboratory of the AANL where spectroscopic measurements were carried out. The cross-section averaged over the spectrum of bremsstrahlung photons and the cross-section per equivalent photon has been measured. Estimates are also obtained for the integral cross-section of this process. The measured cross-sections are compared with the available experimental data and predictions of the TALYS1.9, GEANT4, and FLUKA models. It is shown that the predictions of TALYS and GEANT4 are strongly underestimated (especially at \(E_{\gamma }^{{\max }}\) = 40 MeV) as compared with our data, which is associated with a strong underestimation in model computations of the role of two main near-threshold reaction channels: the 16O(γ, 9Be)7Be channel, which proceeds through the two-particle photofission mechanism and the 16O(γ, n + α + α)7Be spallation channel. The FLUKA predictions are qualitatively comparable with experimental data at Eγ < 40 MeV and Eγ = (50–60) MeV, however, they greatly exceed them in the energy range Eγ = (40–50) MeV, this excess is almost entirely caused by the overestimated contribution of the 16O(γ, n + α + α)7Be spallation reaction cross-section. The data obtained may turn out to be useful in attempts to improve theoretical models of nuclear reactions, in the study of the radioisotope content of the earth’s atmosphere, and also be of interest in connection with the so-called “primary lithium problem”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Tonabashi, M., et al. (Particle Data Group), Phys. Rev. D, 2018, vol. 98, p. 030001.

    Article  ADS  Google Scholar 

  2. Liccardo, V., et al., arXiv:1805.10183v2 [astro-ph.SR], 2018.

  3. Hou, S.Q., et al., Astrophys. J., 2017, vol. 834, p. 165.

    Article  ADS  Google Scholar 

  4. Sordone, L., et al., Astron. Astrophys, 2010, vol. 522, p. A26.

    Article  Google Scholar 

  5. Arnould, M. and Goriely, S., arXiv:2001.11228 [astro-ph.SR], 2020.

  6. Raisbeck, G.M., et al., Geophys. Res. Lett., 1981, vol. 8, p. 1015.

    Article  ADS  Google Scholar 

  7. Bezuglov, M.V., et al., Phys. Rev. C, 2012, vol. 86, p. 024609.

    Article  ADS  Google Scholar 

  8. Di Napoli, V., et al., J. Inorg. Nucl. Chem., 1978, vol. 40, p. 1619.

    Article  Google Scholar 

  9. Sibata, S., et al., Radiochim. Acta, 1998, vol. 80, p. 181.

    Article  Google Scholar 

  10. Matsumura, H., et al., Radiochim. Acta, 2000, vol. 88, p. 313.

    Article  Google Scholar 

  11. Dovbnya, A.N., et al., Phys. of At. Nucl., 2014, vol. 77, p. 805.

    Article  ADS  Google Scholar 

  12. Seltzer, S.M. and Berger, M.J., Nucl. Instr. Meth. B, 1985, vol. 12, p. 95.

    Article  ADS  Google Scholar 

  13. Sirunyan, A., et al., J. Contemp. Phys., 2018, vol. 53, p. 271.

    Article  Google Scholar 

  14. Vasenko, A.A., et al., Mod. Phys. Lett. A, 1990, vol. 5, p. 1299.

    Article  ADS  Google Scholar 

  15. Hakobyan, A.S., et al., J. Contemp. Phys., 2020, vol. 55, p. 111.

    Article  Google Scholar 

  16. Aleksanyan, A., et al., J. Contemp. Phys., 2020, vol. 55, p. 275.

    Article  Google Scholar 

  17. Fultz, S.C., et al., Phys. Rev., 1964, vol. 133, p. B1149.

    Article  Google Scholar 

  18. Varlamov, V.V., et al., Bulletin of the Russian Academy of Sciences, Physics, 2016, vol. 80, no. 3, p. 317.

    Article  ADS  Google Scholar 

  19. Allison, J., Amako, K., Apostolakis, J., et al. Nucl. Instrum.Methods Phys. Res. A, 2016, vol. 835, p. 186.

  20. Cullen, D., Hubbell, J.H., and Kissel, L., UCRL-50400, 1997, vol. 6, rev. 5.

  21. Balabekyan, A.R., et al., J. Contemp. Phys., 2020, vol. 55, p. 1.

    Article  Google Scholar 

  22. USA National Nuclear Data Center database, “Chart of Nuclides. Basic properties of atomic nuclei”, https://www.nndc.bnl.gov/nudat3/.

  23. Bass, R., Nucl. Phys. A, 1974, vol. 231, p. 45.

    Article  ADS  Google Scholar 

  24. Belyshev, S.S., et al., Eur. Phys. J. A, 2015, vol. 51, p. 67.

    Article  ADS  Google Scholar 

  25. Vodin, A.N., et al., arXiv:2012.14475 [nucl-ex], 2020.

  26. Antonov, A.D., et al., Yadernaya Fizika (Nuclear Physics), 1991, vol. 53, p. 14 [in Russian].

    Google Scholar 

  27. Kirichenko, V.V., et al., Yad. Fiz., 1979, vol. 29, p. 572.

    Google Scholar 

  28. Masumoto, K., Kato, T., and Suzuki, N., Nucl. Instr. Meth., 1978, vol. 157, p. 567.

    Article  Google Scholar 

  29. Di Napoli, V., et al., J. Inorg. Nucl. Chem., 1973, vol. 35, p. 1419.

    Article  Google Scholar 

  30. Koning, A., Hilaire, S., and Duijvestijn, M., Proceedings of the International Conference on Nuclear Data for Science and Technology – ND2007, 2007, p. 211.

  31. Battistoni, G., et al., Annals of Nuclear Energy, 2015, vol. 82, p. 10.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the linear accelerator AANL (YerPhI) for providing electron beams to irradiate the experimental setup.

Funding

The study was carried out with the financial support of the Science Committee of the Republic of Armenia within the framework of Scientific Project No. 21AAP-1E006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kotanjyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksanyan, A.Y., Amirkhanyan, S.M., Gulkanyan, H.R. et al. Study of 7Be Formation from Oxygen Nuclei by Bremsstrahlung Photons at \(E_{\gamma }^{{\max }}\) = 40 and 70 MeV. J. Contemp. Phys. 57, 112–122 (2022). https://doi.org/10.3103/S1068337222020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337222020049

Keywords:

Navigation