Skip to main content
Log in

Abstract

The review discusses the results of studies of gas sensors based on zinc oxide. Possibilities and technologies for the manufacture of such sensors are mentioned. ZnO sensors undoped, doped with impurities and carbon nanotubes, as well as sensors based on nanowires and quantum dots are considered. Possibilities of decreasing the operating (working) temperature of heating the working body of the sensors while maintaining a sufficiently high sensitivity to gases are shown. Recently developed ZnO sensors operate today at room temperature (without preheating their working body) in the absence of and under UV light from the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Jaanisco and O.K. Tan (Eds.), Semiconductor Gas Sensors, Woodhead Publishing, 2013.

    Google Scholar 

  2. S.E. Lyshevski (Ed.), Encyclopedia of Nanoscience and Nanotechnology, CRC Press, 2014.

    Google Scholar 

  3. Banika, F.-G., Chemical and biological sensors Technosphera, Press, 2014.

    Google Scholar 

  4. Aroutiounian, V.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2019, vol. 54, p. 356.

    Google Scholar 

  5. Malik. R. et al., Appl. Phys. Rev., 2020, vol. 7, p. 021301.

    Article  ADS  Google Scholar 

  6. Aroutiounian, V.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2020, vol. 55, p. 213.

    Google Scholar 

  7. Aroutiounian, V.M., Int. J. Hydrogen Energy, 2007, vol. 32, p. 1145.

    Article  Google Scholar 

  8. Wang, Z.L., ACS Nano, 2008, vol. 2, p. 1987.

    Article  Google Scholar 

  9. Kumar, M.A., Jung, S., and Ji, T., Sensors, 2011, vol. 11, p. 5087.

    Article  Google Scholar 

  10. Cleetus, C.M. et al., Int. J. Nanomedicine, 2020, vol. 15, p. 5097.

    Article  Google Scholar 

  11. Aroutiounian, V.M., J. Nanomedicine and Nanotechnology, 2020, vol. 11, p. 3.

    Google Scholar 

  12. Peng, S.-M. et al., J. Phys. Chem. C, 2010, vol. 114, p. 3204.

    Article  Google Scholar 

  13. Lim, J.-H. et al., Adv. Mater., 2006, vol. 18, p. 2720.

    Article  Google Scholar 

  14. Sun, Y. et al., Phys. Stat. Sol., 2010, vol. 247 p. 1424.

    Article  Google Scholar 

  15. Seiyama, T. et al., Anal. Chem., 1962, vol. 34, p. 1502.

    Article  Google Scholar 

  16. Aroutiounian, V.M. et al., Sensors and Actuators B, 2013, vol. 177, p. 308.

    Article  Google Scholar 

  17. Galstyan, V.E., Aroutiounian, V.M., Arakelyan, V.M., and Shahnazaryan, G.E., J. Contemp. Phys. (Armenian Ac. Sci.), 2008, vol. 1, p. 242.

    Google Scholar 

  18. Bie, L.J. et al., Sensors and Actuators B, 2007, vol. 126, p. 604.

    Article  Google Scholar 

  19. Hsueh, T.J. et al., Ibid B, 2007, vol. 126, p. 473.

    Google Scholar 

  20. Bhattacharyya, P., Basu, P.K., Saha, H., and Basu, S., Ibid B, 2007, vol. 124, p. 62.

    Google Scholar 

  21. Kim, K.W. et al., Ibid B, 2007, vol. 123, p. 318.

    Google Scholar 

  22. Patil, D.R. and Patil, L.A., IEEE Sensors Journal, 2007, vol. 7, p. 434.

    Article  ADS  Google Scholar 

  23. Shinde, V.R. et al., Sensors and Actuators B, 2007, vol. 123, p. 882.

    Article  Google Scholar 

  24. Zhang, G., Li, C., Cheng, F., and Chen, J., Ibid B, 2007, vol. 120, p. 403.

    Google Scholar 

  25. Mrdha, S. and Basak, D., J. Phys. D, 2007, vol. 40, p. 6902.

    Article  ADS  Google Scholar 

  26. Navale, S.C. et al., Sensors and Actuators B, 2007, vol. 126, p. 382.

    Article  Google Scholar 

  27. Aroutiounian, V. et al., J. Sens. Sens. Syst., 2018, vol. 7, p. 281.

    Article  ADS  Google Scholar 

  28. Shahkhatuni, G.H. et al., J. Contemp. Phys. (Armenian Ac. Sci.), 2019, vol. 54, p. 188.

  29. Wang, Z., Tian, Z., Han, D., and Gu, F., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 5466.

    Article  Google Scholar 

  30. Xia, J., Diao, K., Zheng, Z., and Cui, X., RSC Adv., 2017, vol. 7, p. 38444.

    Article  Google Scholar 

  31. Darvishnejad, M.H., Firooz, A.A., Beheshtian, J., and Khodadadi, A.A., RSC Adv., 2016, vol. 6, p. 7838.

    Article  Google Scholar 

  32. Xing, X. et al., Ibid, 2016, vol. 6, p. 101 304.

    Google Scholar 

  33. Huang, H.W. et al., Ibid, 2015, vol. 5, p. 101910.

    Google Scholar 

  34. Alenezi, M.R., Henley, S.J., Emerson, N.G., and Silva, S.R.P., Nanoscale, 2014, vol. 6, p. 235.

    Article  ADS  Google Scholar 

  35. Nasiri, N. et al., Adv. Mater., 2015, vol. 27, p. 4336.

    Article  Google Scholar 

  36. Lee, J. et al., Materials Letters, 2018, vol. 234, p. 193.

    Google Scholar 

  37. Napi, M. et al., J. Nanomaterials, 2019, vol. 4, p. 574507.

    Google Scholar 

  38. Righettoni, M., Tricoli, A., and Pratsinis, S.E., Chem. Mater., 2010, vol. 22, p. 3152.

    Article  Google Scholar 

  39. Tan, S.T. et al., Sensors and Actuators, 2016, vol. 227, p. 304.

    Article  Google Scholar 

  40. Aroutiounian, V.M. et al., Int.J. Emerging Trends in Sci. and Technol., 2014, vol. 1, p. 1309.

    Google Scholar 

  41. Aroutiounian, V.M., Sensors and Transducers, 2018, vol. 223, p. 9.

    Google Scholar 

  42. Aroutiounian, V.M., Lith. J. Phys., 2015, vol. 55, p. 319.

    Google Scholar 

  43. Sharma, A., Toma, M., and Gupta, V., J. Mater. Chem., 2012, vol. 22, p. 23608.

    Article  Google Scholar 

  44. Aroutiounian. V.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2019, vol. 54, p. 356.

    Google Scholar 

  45. Aroutiounian, V.M., Sensors and Transducers, 2018, vol. 228, p. 1.

    Google Scholar 

  46. Adamyan, Z. et al., Sens. Actuators B, 2014, vol. 205, p. 261.

    Article  Google Scholar 

  47. Ahmadnia-Feyzabad, S., Khodadadi, A.A., Vesali-Nase, M., and Mortazavi, Y., Ibid B, 2012, vol. 166–167, p. 150.

    Google Scholar 

  48. Alvi, M.A., Madani, J., and Kumar, A., Mater. Res. Express, 2019, p. 61 050.

  49. Salehi, S., Nikan, E., Khodadadi, A.A., and Mortazavi, Y., Sens. Actuators B, 2010, vol. 205, p. 261.

    Article  Google Scholar 

  50. Zhang, S., Chen, H.-S, Matras-Postolek, K., and Yang, P., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 30300.

    Article  Google Scholar 

  51. Qi, T., Yang, X., and Sun, J., Sens. Actuators B, 2019, vol. 283, p. 93.

    Article  Google Scholar 

  52. Tang, W. and Wang, J., Ibid B, 2015, vol. 207, p. 66.

    Google Scholar 

  53. Lupan, V. et al., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 4084.

    Article  Google Scholar 

  54. Acharya, K.Y. et al., Analyst, 2016, vol. 141, p. 2977.

    Article  ADS  Google Scholar 

  55. Wang, Z.T., Han, D., and Gu, F., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 5466.

    Article  Google Scholar 

  56. Tian, H., Fan, H., Li, M., and Ma, L., ACS Sens., 2016, vol. 1, p. 243.

    Article  Google Scholar 

  57. Katoch, A., Kim, J.-H., and Kim, S.S., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 21 494.

    Article  Google Scholar 

  58. Drmosh, Q.A. et al., Proc. 17th International Meeting on Chemical Sensors, Austria: University of Vienna, 2018. p. 318.

  59. Khoang, N.D. et al., Sensors and Actuators B, 2012, vol. 174, p. 594.

    Article  Google Scholar 

  60. Hieu, N.V. et al., J. Nanomaterials, Article ID 972025 (2015).

  61. Mohammed, M.et al., Talanta, 2017, vol. 170, p. 215.

    Article  Google Scholar 

  62. Nasiri, N. and Clarke, Ch., Biosensors, 2019, vol. 9, p. 43.

    Article  Google Scholar 

  63. Forleo, A. et al., Sensors and Actuators B, 2010, vol. 146, p. 111.

    Article  Google Scholar 

  64. Kim, J. and Yong, K., J. Phys. C, 2011, vol. 115, p. 7218.

    Google Scholar 

  65. Fan, H. and Jia, X., Solid State Ionics, 2011, vol. 192, p. 688.

    Article  Google Scholar 

  66. Huang, J. et al., Sens. Actuator B, 2015, vol. 207, p. 782.

    Article  Google Scholar 

  67. Chen, Y.L., Ibid B, 2012, vol. 166-167, p. 61.

    Google Scholar 

  68. Shobhnath, P. et al., Ibid B, 2019, vol. 293, p. 83.

    Google Scholar 

  69. Subha, P.P. and Jayaraj, M.K., BMC Chemistry, 2019, vol. 13, p. 4.

    Article  Google Scholar 

  70. Patil, L.A. et al., J.Modern Physics, 2011, vol. 2, p. 1215.

    Article  ADS  Google Scholar 

  71. Mani, G.K., Bosco, J., and Rayappan, B., Sensors and Actuators B, 2013, vol. 183, p. 459.

    Article  Google Scholar 

  72. Kruefu, V. et al., Nanoscale Research Letters, 2014, vol. 9, p. 467.

    Article  ADS  Google Scholar 

  73. Duo, V.T. et al., J Nanomaterials, 2019, Article ID 6821937.

  74. Wang, Z. et al., Sensors & Actuators B, 2019, vol. 285, p. 590.

    Article  Google Scholar 

  75. Korotcenkov, G., Brinzari, V., and Cho, B.K., J. Sensors, 2016, vol. 31, p. 2016.

    Google Scholar 

  76. Banichevich, A., Peyerimhoff, S.D., and Grein, F., Chem. Phys. Lett., 1990, vol. 173, p. 1.

    Article  ADS  Google Scholar 

  77. Tsai, Y.-T. et al., IEEE Sens. J., 2018, vol. 18, p. 5559.

    Article  ADS  Google Scholar 

  78. Ziegler, D. et al., Solid St. Ion., 2018, vol. 320, p. 24.

    Article  Google Scholar 

  79. Catto, A.C. et al., J. Alloys. Compd., 2018, vol. 748, p. 411.

    Article  Google Scholar 

  80. Wu, J. et al., Adv. Sci., 2017, vol. 4, p. 1600319.

    Article  Google Scholar 

  81. Hu, J. et al., J. Mater. Chem. C, 2017, vol. 5, p. 6862.

    Article  Google Scholar 

  82. Li, L. et al., Anal. Chem., 2015, vol. 87, p. 1638.

    Article  Google Scholar 

  83. Gu, F., Nie, R., Han, D., and Wang, Z., Sens. Actuators B, 2015, vol. 219, p. 94.

    Article  Google Scholar 

  84. Chen, N. et al., Ibid B, 2013, vol. 188, p. 902.

    Google Scholar 

  85. Xia, Y. et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 35454.

    Article  Google Scholar 

  86. Zhang, H. et al., Sens. Actuators B, 2014, vol. 190, p. 472.

    Article  Google Scholar 

  87. Liu, S. et al., Ibid B, 2014, vol. 202, p. 272.

    Google Scholar 

  88. Chu, X. et al., Ibid B, 2017, vol. 251, p. 120.

    Google Scholar 

  89. Li, Y. et al., Ceram. Int., 2018, vol. 44, p. 6836.

    Article  Google Scholar 

  90. Thanh, H.X. et al., J. Alloys. Compd., 2017, vol. 708, p. 470.

    Article  Google Scholar 

  91. Park, S. et al., Ceram. Int., 2013, vol. 39, p. 3539.

    Article  Google Scholar 

  92. Liang, Y.C. and Lo, Y.-J., RSC Adv., 2017, vol. 7, p. 29428.

    Article  Google Scholar 

  93. Liu, J. et al., Sens. Actuators B, 2017, vol. 249, p. 715.

    Article  Google Scholar 

  94. Chen, R. et al., Ibid B, 2018, vol. 255, p. 2538.

    Google Scholar 

  95. Baratto, C. et al., Ibid B, 2004, vol. 100, p. 261.

    Google Scholar 

  96. Zhu, L. and Zeng, W., Ibid A, 2017, vol. 267, p. 242.

    Google Scholar 

  97. Carotta, M.C. et al., Thin Solid Film, 2011, vol. 520, p. 939.

    Article  ADS  Google Scholar 

  98. Park, S., An, S., Mun, Y., and Lee, C., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 4285.

    Article  Google Scholar 

  99. Zhang, C. et al., Sens. Actuators B, 2017, vol. 248, p. 886.

    Article  Google Scholar 

  100. Hsu, C.L., Chang, L.F., and Hsueh, T.-J., Ibid B, 2017, vol. 249, p. 265.

    Google Scholar 

  101. Espid, E. and Taghipour, F., ECS J. Solid State Sci. Technol., 2018, vol. 7, p. Q3089.

    Article  Google Scholar 

  102. Markiewicz, N., et al., Appl. Phys. Lett., 2019, vol. 114, p. 53508.

    Article  Google Scholar 

  103. Casals, O. et al., ACS Sens., 2019, vol. 4, p. 822.

    Article  Google Scholar 

  104. Wagner, R., Schönauer-Kamin, D., and Moos, R., Sensors, 2019, vol. 19, p. 4104.

    Article  Google Scholar 

  105. Jacobs, C.B. et al., Sci. Reports, 2017, vol. 7, p. 6053.

    ADS  Google Scholar 

  106. Cui, J. et al., Sensors and Actuators B, 2016, vol. 227, p. 220.

    Article  Google Scholar 

  107. Aleksanyan, M.S. et al., J. Contemp. Phys. (Armenian Ac. Sci.), 2020, vol. 55, p. 205.

  108. Zakaryan, H. and Aroutiounian, V., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 227.

    Google Scholar 

  109. Hunanyan, A.A., Aghamalyan, M.A., Aroutiounian, V.M., and Zakaryan, H.A., Ibid, 2019, vol. 54, p. 282.

    Google Scholar 

  110. Aghamalyan, M.A. et al., Ibid, 2020, vol. 55, p. 235.

    Google Scholar 

  111. Kohn, W. and Sham, L.J., Phys. Rev., 1965, vol. 140, p. A1133.

    Article  ADS  Google Scholar 

  112. Giannozzi, P. et al., J. Phys. Condens. Matter, 2017, vol. 29, p. 465901.

    Article  Google Scholar 

  113. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  ADS  Google Scholar 

  114. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Oxford University Press, 1990.

    Google Scholar 

  115. Schierbaum, K.D., Kirner, U.K., Geiger, J.F., and Göpel, W., Sensors Actuators B, 1991, vol. 4, p. 87.

    Article  Google Scholar 

  116. Schierbaum, K.D., Wei-Xing, X., and Göpel, W., Berichte der Bunsengesellschaft für Phys.Chemie, 1993, vol. 97, p. 363.

    Google Scholar 

  117. Core/Shell Quantum Dots Synthesis, Properties and Devices (Eds. X.Tong and Z. M. Wang), Springer P. H. 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Aroutiounian.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aroutiounian, V.M. Zinc Oxide Gas Sensors. J. Contemp. Phys. 55, 323–333 (2020). https://doi.org/10.3103/S1068337220040040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220040040

Keywords:

Navigation