Skip to main content
Log in

A Lambert-W Exactly Solvable Level-Crossing Confluent Hypergeometric Two-State Model

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

We introduce a new exactly integrable level-crossing model of quantum semiclassical two-state problem for which the analytic solution is written in terms of the Kummer confluent hypergeometric functions. This is a constant-amplitude field-configuration describing an asymmetricin- time level-crossing process for which the laser field frequency detuning is given in terms of the Lambert-W function. The general solution of the problem for this model is written as a linear combination, with arbitrary constant coefficients, of two fundamental solutions each of which presents an irreducible linear combination of two confluent hypergeometric functions. We present the fundamental solutions and analyze the behavior of the system in the external field defined by the specific field configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shore, B.W., The Theory of Coherent Atomic Excitation, New York: Wiley, 1990.

    Google Scholar 

  2. Landau, L.D., Phys. Z. Sowjetunion, 1932, vol. 2, p. 46.

    Google Scholar 

  3. Zener, C., Proc. R. Soc. London, Ser. A, 1932, vol. 137, p. 696.

    Article  ADS  Google Scholar 

  4. Majorana, Е., Nuovo Cimento, 1932, vol. 9, p. 43.

    Article  Google Scholar 

  5. Stückelberg, E.C.G., Helv. Phys. Acta., 1932, vol. 5, p. 369.

    Google Scholar 

  6. Nikitin, E.E., Discuss. Faraday Soc., 1962, vol. 33, p. 14.

    Article  Google Scholar 

  7. Crothers, D.S.F. and Hughes, J.G., J. Phys. B, 1977, vol. 10, p. L557.

  8. Rosen, N. And Zener, C., Phys. Rev., 1932, vol. 40, p. 502.

    Article  ADS  Google Scholar 

  9. Demkov, Yu.N. and Kunike, M., Vestn. Leningr. Univ. Fis. Khim., 1969, vol. 16, p. 39.

    Google Scholar 

  10. Bambini, A. and Berman, P.R., Phys. Rev. A, 1981, vol. 23, p. 2496.

    Article  ADS  MathSciNet  Google Scholar 

  11. Hioe, F.T. and Carroll, C.E., Phys. Rev. A, 1985, vol. 32, p. 1541.

    Article  ADS  Google Scholar 

  12. Hioe, F.T. and Carroll, C.E., J. Opt. Soc. Am. B, 1985, vol. 3(2), p. 497.

  13. Carroll, C.E. and Hioe, F.T., J. Phys. A, 1986, vol. 19, p. 3579.

    Article  ADS  MathSciNet  Google Scholar 

  14. Ishkhanyan, A.M., J. Phys. A, 1997, vol. 30, p. 1203.

    Article  ADS  MathSciNet  Google Scholar 

  15. Ishkhanyan, A.M., Optics Communications, 2000, vol. 176, p. 155.

    Article  ADS  Google Scholar 

  16. Ishkhanyan, A.M., J. Phys. A, 2000, vol. 33, p. 5539.

    Article  ADS  MathSciNet  Google Scholar 

  17. Ronveaux, A., Heun’s Differential Equations, London: Oxford University Press, 1995.

    MATH  Google Scholar 

  18. NIST Handbook of Mathematical Functions. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.). New York: Cambridge University Press, 2010.

  19. Ishkhanyan, A.M., Shahverdyan, T.A., and Ishkhanyan, T.A., Eur. Phys. J. D, 2015, vol. 69, p. 10.

    Article  ADS  Google Scholar 

  20. Ishkhanyan, A.M. and Grigoryan, A.E., J. Phys. A, 2014, vol. 47, p. 465205.

    Article  ADS  MathSciNet  Google Scholar 

  21. Shahverdyan, T.A., Ishkhanyan, T.A., Grigoryan, A.E., and Ishkhanyan, A.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, vol. 50, p. 211.

    Article  ADS  Google Scholar 

  22. Vidunas, R. and Filipuk, G., Funkcialaj Ekvacioj, 2013, vol. 56, p. 271.

    Article  MathSciNet  Google Scholar 

  23. Maier, R.S., J. Differential Equations, 2005, vol. 213, p. 171.

    Article  ADS  MathSciNet  Google Scholar 

  24. Svartholm, N., Math. Ann., 1939, vol. 116, p. 413.

    Article  MathSciNet  Google Scholar 

  25. Erdélyi, A., Q. J. Math. (Oxford), 1944, vol. 15, p. 62.

    Article  Google Scholar 

  26. Schmidt, D., J. Reine Angew. Math., 1979, vol. 309, p. 127.

    MathSciNet  Google Scholar 

  27. El–Jaick, L.J. and Figueiredo, B.D.B., J. Math. Phys., 2008, vol. 49, p. 083508.

    Article  ADS  MathSciNet  Google Scholar 

  28. Ishkhanyan, T.A. and Ishkhanyan, A.M., Ann. Phys., 2017, vol. 383, p. 79.

    Article  ADS  Google Scholar 

  29. Ishkhanyan, T.A. and Ishkhanyan, A.M., AIP Advances, 2014, vol. 4, p. 087132.

    Article  ADS  Google Scholar 

  30. Ishkhanyan, T.A. and Ishkhanyan, A.M., Appl. Math. Comput., 2018, vol. 338, p. 624.

    MathSciNet  Google Scholar 

  31. Saget, G., Ishkhanyan, A.M., Leroy, C., and Ishkhanyan, T.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 324.

    Article  ADS  Google Scholar 

  32. Manukyan, A.M., Ishkhanyan, T.A., Hakobyan, M.V., and Ishkhanyan, A.M., IJDEA, 2014, vol. 13, p. 231.

    Google Scholar 

  33. Lambert, J.H., Acta Helvitica, 1758, vol. 3, p. 128.

    Google Scholar 

  34. Euler, L., Acta Acad. Scient. Petropol., 1783, vol. 2, p. 29.

    Google Scholar 

  35. Slater, L.J., Generalized hypergeometric functions, Cambridge: Cambridge University Press, 1966.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Т. А. Ishkhanyan.

Additional information

Russian Text © Т.А. Ishkhanyan, 2019, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2019, Vol. 54, No. 1, pp. 24–35.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishkhanyan, Т.А. A Lambert-W Exactly Solvable Level-Crossing Confluent Hypergeometric Two-State Model. J. Contemp. Phys. 54, 17–26 (2019). https://doi.org/10.3103/S1068337219010031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337219010031

Keywords

Navigation