Skip to main content
Log in

LiDAR Sensing of Aerosols Induced by Air Ions

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A strong correlation between the LiDAR aerosol backscattering signal and air ion concentration in an enclosed underground room is detected for the first time. Nowadays, air ions monitoring is considered to be the main tool in the search for earthquake precursors, and the revealed correlation opens interesting opportunities of using LiDARs in the search for precursors. LiDARs allow sensing the dynamics of aerosols generated by air ions as condensation nuclei on long tracks along the laser beam, compared to pointwise detection of air ions utilizing appropriate sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Given, D., Allen, R.M., Baltay, A.S., Bodin, P., Cochran, E.S., Creager, K., de Groot, R.M., Gee, L.S., Hauksson, E., Heaton, T.H., Hellweg, M., Murray, J.R., Thomas, V.I., Toomey, D., and Yelin, T.S., Revised technical implementation plan for the ShakeAlert system-An earthquake early warning system for the West Coast of the United States. U.S. Geological Survey Open-File Report 2018-1155, (Reston, Virginia, 2018). https://pubs.usgs.gov/of/2018/1155/ofr20181155.pdf

    Book  Google Scholar 

  2. Gasparini, P., Manfredi, G., and Zschau, J., Earthquake Early Warning Systems, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-72241-0

    Book  Google Scholar 

  3. Decker, R.W., State-of-the-art in volcano forecasting, Bull. Volcanol., 1973, vol. 37, no. 3, pp. 372–393. https://doi.org/10.1007/BF02597635

    Article  ADS  Google Scholar 

  4. Sparks, R.S.J., Forecasting volcanic eruptions, Earth Planet. Sci. Lett., 2003, vol. 210, no. 1, pp. 1–15. https://doi.org/10.1016/S0012-821X(03)00124-9

    Article  ADS  Google Scholar 

  5. Niu, F., Silver, P.G., Daley, T.M., Cheng, X., and Majer, E.L., Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site, Nature, 2008, vol. 454, no. 7201, pp. 204–208. https://doi.org/10.1038/nature07111

    Article  ADS  Google Scholar 

  6. Pulinets, S.A., Alekseev, V.A., Legen’ka, A.D., and Khegai, V.V., Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification, Adv. Space Res., 1997, vol. 20, no. 11, pp. 2173–2176. https://doi.org/10.1016/S0273-1177(97)00666-2

    Article  ADS  Google Scholar 

  7. Zhou, Y., Yang, J., Zhu, F., Su, F., Hu, L., and Zhai, W., Ionospheric disturbances associated with the 2015 M7.8 Nepal earthquake, Geodesy and Geodynamics, 2017, vol. 8, no. 4, pp. 221–228. https://doi.org/10.1016/j.geog.2017.04.004

    Article  Google Scholar 

  8. Adil, M.A., Şentürk, E., Pulinets, S.A., and Amory-Mazaudier, C., A Lithosphere-atmosphere-ionosphere coupling phenomenon observed before M 7.7 Jamaica Earthquake, Pure Appl. Geophys., 2021, vol. 178, no. 10, pp. 3869–3886. https://doi.org/10.1007/s00024-021-02867-z

    Article  ADS  Google Scholar 

  9. Ouzounov, D., Pulinets, S., Davidenko, D., Rozhnoi, A., Solovieva, M., Fedun, V., Dwivedi, B.N., Rybin, A., Kafatos, M., and Taylor, P., Transient effects in atmosphere and ionosphere preceding the 2015 M7.8 and M7.3 Gorkha-Nepal earthquakes, Front. Earth Sci., 2021, vol. 9, p. 757358. https://doi.org/10.3389/feart.2021.757358

  10. Namgaladze, A., Karpov, M., and Knyazeva, M., Aerosols and seismo-ionosphere coupling: A review., J. Atmos. Solar-Terr. Phys., 2018, vol. 171, pp. 83–93. https://doi.org/10.1016/j.jastp.2018.01.014

    Article  ADS  Google Scholar 

  11. Pershin, S.M., Sobisevich, A.L., Makarov, V.S., Myasnikov, A.V., Grishin, M.Ya., Zavozin, V.A., Lednev, V.N., Likhodeev, D.V., and Kazalov, V.V., Lidar monitoring of Elbrus volcanic center’s small chamber magmatic activity, Dokl. Phys., 2023, vol. 509, no. 1, pp. 15–20. https://doi.org/10.31857/S2686740023020086

    Article  Google Scholar 

  12. Hattori, K., Wadatsumi, K., Furuya, R., Yada, N., Yamamoto, I., Ninagawa, K., Ideta, Y., and Nishihashi, M., Variation of radioactive atmospheric ion concentration associated with large earthquakes, AGU Fall Meeting Abstracts, San Francisco, 2008, vol. 2008, p. S52A-03.

  13. Freund, F.T., Kulachi, I.G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., and Freund, M.M., Air ionization at rock surfaces and pre-earthquake signals, J. Atmos. Solar-Terr. Phys., 2009, vol. 71. no. 17, pp. 1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013

    Article  ADS  Google Scholar 

  14. Salh, H., Muhammad, A., Ghafar, M.M., and Külahcı F., Potential utilization of air temperature, total electron content, and air relative humidity as possible earthquake precursors: A case study of Mexico M7.4 earthquake, J. Atmos. Solar-Terr. Phys., 2022, vol. 237, p. 105927. https://doi.org/10.1016/j.jastp.2022.105927

  15. Liperovsky, V.A., Meister, C.-V., Liperovskaya, E.V., Davidov, V.F., and Bogdanov, V., On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes, Nat. Hazards Earth Syst. Sci., 2005, vol. 5, no. 6, pp. 783–789. https://doi.org/10.5194/nhess-5-783-2005

    Article  ADS  Google Scholar 

  16. Freund, F.T., Takeuchi, A., and Lau, B.W.S., Electric currents streaming out of stressed igneous rocks—A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth, Parts A/B/C, 2006, vol. 31, no. 4, pp. 389–396. https://doi.org/10.1016/j.pce.2006.02.027

    Article  ADS  Google Scholar 

  17. Pulinets, S. and Davidenko, D., Ionospheric precursors of earthquakes and Global Electric Circuit, Adv. Space Res., 2014, vol. 53, no. 5, pp. 709–723. https://doi.org/10.1016/j.asr.2013.12.035

    Article  ADS  Google Scholar 

  18. King, C.-Y., Gas geochemistry applied to earthquake prediction: An overview, J. Geophys. Res.: Solid Earth, 1986, vol. 91, no. B12, pp. 12269–12281. https://doi.org/10.1029/JB091iB12p12269

    Article  Google Scholar 

  19. Queißer, M., Burton, M., and Kazahaya, R., Insights into geological processes with CO2 remote sensing—A review of technology and applications, Earth-Sci. Rev., 2019, vol. 188, pp. 389–426. https://doi.org/10.1016/j.earscirev.2018.11.016

    Article  ADS  Google Scholar 

  20. Wallace, P.J., Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies, J. Volcan. Geotherm. Res., 2001, vol. 108, nos. 1–4, pp. 85–106.https://doi.org/10.1016/S0377-0273

  21. Aiuppa, A., Federico, C., Giudice, G., Giuffrida, G., Guida, R., Gurrieri, S., Liuzzo, M., Moretti, R., and Papale, P., The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio, J. Volcan. Geotherm. Res., 2009, vol. 182, nos. 3–4, pp. 221–230. https://doi.org/10.1016/j.jvolgeores.2008.09.013

    Article  ADS  Google Scholar 

  22. Edmonds, M., Liu, E.J., and Cashman, K.V., Open-vent volcanoes fuelled by depth-integrated magma degassing, Bull. Volcan., 2022, vol. 84, no. 3, p. 28. https://doi.org/10.1007/s00445-021-01522-8

    Article  ADS  Google Scholar 

  23. Fiorani, L., Colao, F., and Palucci, A., Measurement of Mount Etna plume by CO2-laser-based lidar, Opt. Lett., 2009, vol. 34, no. 6, pp. 800–802. https://doi.org/10.1364/OL.34.000800

    Article  ADS  Google Scholar 

  24. Warden, S., Bleier, T., and Kappler, K., Long term air ion monitoring in search of pre-earthquake signals, J. Atmos. Solar-Terr. Phys., 2019, vol. 186, pp. 47–60. https://doi.org/10.1016/j.jastp.2019.01.009

    Article  ADS  Google Scholar 

  25. Pershin, S.M., Dolgikh, G.I., Bunkin, A.F., Grishin, M.Ya., Zavozin, V.A., Klinkov, V.K., Lednev, V.N., Makarov, V.S., Plotnikov, A.A., and Turin, A.V., Correlation of aerosol scattering lidar and laser strainmeter signals during Earth’s crust deformations, Bull. Lebedev Phys., Inst., 2018, vol. 45, no. 7, pp. 214–217. https://doi.org/10.3103/S1068335618070059

    Article  ADS  Google Scholar 

  26. Pershin, S.M., Sobisevich, A.L., Grishin, M.Ya., Gravirov, V.V., Zavozin, V.A., Kuzminov, V.V., Lednev, V.N., Likhodeev, D.V., Makarov, V.S., Myasnikov, A.V., and Fedorov, A.N., Volcanic activity monitoring by unique LiDAR based on a diode laser, Laser Phys. Lett., 2020, vol. 17, no. 11, p. 115607. https://doi.org/10.1088/1612-202X/abbedc

  27. Zavozin, V.A., Grishin, M.Ya., Lednev, V.N., Makarov, V.S., and Pershin, S.M., Eye-safe photon counting LiDAR for magmatic aerosol detection, Laser Phys., 2022, vol. 32, no. 12, p. 125601. https://doi.org/10.1088/1555-6611/aca15d

  28. Pershin, S.M., Sobisevich, A.L., Zavozin, V.A., Grishin, M.Ya., Lednev, V.N., Makarov, V.S., Petkov, V.B., Ponurovskii, Ya.Ya., Fedorov, A.N., and Artemova, D.G., LiDAR detection of aerosols in the tunnel above the Elbrus volcano chamber, Bull. Lebedev Phys. Inst., 2022, vol. 49, no. 2, pp. 36–41. https://doi.org/10.3103/S1068335622020063

    Article  ADS  Google Scholar 

  29. Bezrukov, L.B., Gromtseva, A.F., Zavarzina, V.P., Karpikov, I.S., Kurlovich, A.S., Lebedev, D.A., Mezhokh, A.K., Naumov, P.Yu., Silaeva, S.V., and Sinev, V.V., Observation of an excess of positive air ions in underground cavities, Geomagn. Aeron., 2022, vol. 62, no. 6, pp. 743–755. https://doi.org/10.1134/S0016793222060020

    Article  ADS  Google Scholar 

  30. Myasnikov, A.V., Pershin, S.M., Grishin, M.Ya., Zavozin, V.A., Makarov, V.S., and Ushakov, A.A., Estimating the influence of meteorological factors on the aerosol lidar signal in tunnels over the Elbrus volcano chamber, Phys. Wave Phenom., 2022, vol. 30, no. 2, pp. 119–127. https://doi.org/10.3103/S1541308X22020054

    Article  ADS  Google Scholar 

  31. Savitzky, A. and Golay, M.J.E., Smoothing and differentiation of data by simplified least squares procedures, Analyt. Chem., 1964, vol. 36, no. 8, pp. 1627–1639. https://doi.org/10.1021/ac60214a047

    Article  ADS  Google Scholar 

  32. Othmane, A., Kiltz, L., and Rudolph, J., Survey on algebraic numerical differentiation: historical developments, parametrization, examples, and applications, Int. J. Syst. Sci., 2022, vol. 53, no. 9, pp. 1848–1887. https://doi.org/10.1080/00207721.2022.2025948

    Article  MathSciNet  ADS  Google Scholar 

  33. Pershin, S.M., Grishin, M.Ya., Zavozin, V.A., Lednev, V.N., Lukyanchenko, V.A., and Makarov, V.S., Aerosol layers sensing by an eye-safe lidar near the Elbrus summit, Laser Phys. Lett., 2020, vol. 17, no. 2, p. 026003. https://doi.org/10.1088/1612-202X/ab66c4

Download references

ACKNOWLEDGMENTS

The authors are grateful to Yu.V. Sten’kin and L.A. Kuzmichev for assistance in experiments at the underground laboratory of the Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University.

Funding

This study was supported by the Russian Science Foundation, project no. 19-19-00712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pershin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershin, S.M., Zavozin, V.A., Lednev, V.N. et al. LiDAR Sensing of Aerosols Induced by Air Ions. Bull. Lebedev Phys. Inst. 50, 559–565 (2023). https://doi.org/10.3103/S1068335623120138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623120138

Keywords:

Navigation