Skip to main content
Log in

Muography of the Cave Church of the Holy Dormition Pskovo-Pechersky Monastery

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The method for visualizing the internal structure of objects (muography method) based on the analysis of the features of passages of atmospheric muons generated in cosmic ray interactions, is based on the spatial distributions of trajectories of penetrating muons recorded by detectors. The method is at the junction of elementary particle physics with many other areas of natural science, e.g., with archaeology. The article presents the results of a muographic study of two objects in the cave complex of a unique historical and archaeological monument, i.e., the Holy Dormition Pskovo-Pechersky Monastery. The experimental technique is based on nuclear emulsion detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Kravkov, S.V., Pyotr Petrovich Lazarev (On the tenth anniversary of his death), Phys. Usp., 1952, vol. 46, no. 4, pp. 441–449. https://doi.org/10.3367/UFNr.0046.195204a.0441

    Article  Google Scholar 

  2. George, E.P., Cosmic rays measure overburden of tunnel, Commonwealth Engineer, 1955, pp. 455–457.

    Google Scholar 

  3. Ariga, A., Ariga, T., De Lellis, G., Ereditato, A., and Niwa, K., Nuclear Emulsions, in Particle Physics Reference Library, Cham: Springer, 2020, vol. 2, p. 383. https://doi.org/10.1007/978-3-030-35318-6

    Book  Google Scholar 

  4. Vasina, S.G., Starkov, N.I., Polukhina, N.G., and Shchedrina, T.V., Results of the test experiment on optimization of the number of emulsion layers in modern nuclear studies with track detectors, Bull. Lebedev Phys. Inst., 2022, vol. 49, no. 12, pp. 429–435. https://doi.org/10.3103/S1068335622120107

    Article  ADS  Google Scholar 

  5. Armenise, N., De Serio, M., Ieva, M., Muciaccia, M.T., Pastore, A., Simone, S., Damet, J., Kreslo, I., Savvinov, N., Waelchli, T., Consiglio, L., Cozzi, M., Di Ferdinando, D., Esposito, L.S., Giacomelli, G., et al., High-speed particle tracking in nuclear emulsion by last-generation automatic microscopes, Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 551, pp. 261–270. https://doi.org/10.1016/j.nima.2005.06.072

    Article  ADS  Google Scholar 

  6. Alexandrov, A., Buonaura, A., Consiglio, L., D’Ambrosio, N., De Lellis, G., Di Crescenzo, A., Galati, G., Gentile, V., Lauria, A., Montesi, M.C., Tioukov, V., Vladymyrov, M., and Voevodina, E., The continuous motion technique for a new generation of scanning systems, Sci. Rep., 2017, vol. 7, p. 7310. https://doi.org/10.1038/s41598-017-07869-3

    Article  ADS  Google Scholar 

  7. S. Procureur, Muon imaging: principles, technologies and applications, Nucl. Instrum. Methods Phys. Res. A, 2018, vol. 878, pp. 169–179. https://doi.org/10.1016/j.nima.2017.08.004

    Article  ADS  Google Scholar 

  8. Bonechi, L., D’Alessandro, R., and Giammanco, A., Atmospheric muons as an imaging tool, Rev. Phys., 2020, vol. 5, p. 100038. https://doi.org/10.1016/j.revip.2020.100038

  9. Dedenko, L.G., Managadze, A.K., Roganova, T.M., Bagulya, A.V., Vladimirov, M.S., Zemskova, S.G., Konovalova, N.S., Polukhina, N.G., Starkov, N.I., Chernyavskiy, M.M., and Grachev, V.M., Prospects of the study of geological structures by muon radiography based on emulsion track detectors, Bull. Lebedev Phys. Inst., 2014, vol. 41, no. 8, pp. 235–241. https://doi.org/10.3103/S1068335614080065

    Article  ADS  Google Scholar 

  10. Aleksandrov, A.B., Vladimirov, M.S., Galkin, V.I., Goncharova, L.A., Grachev, V.M., Vasina, S.G., Konovalova, N.S., Malovichko, A.A., Managadze, A.K., Okat’eva, N.M., Polukhina, N.G., Roganova, T.M., Starkov, N.I., Tioukov, V.E., Chernyavsky, M.M., et al., Muon radiography method for fundamental and applied research, Phys.-Usp., 2017, vol. 60, no. 12, pp. 1277–1293. https://doi.org/10.3367/UFNe.2017.07.038188

    Article  ADS  Google Scholar 

  11. Abiev, A., Bagulya, A., Chernyavsky, M., Dashkina, A., Dimitrienko, A., Gadjiev, A., Gadjiev, M., Galkin, V., Gippius, A., Goncharova, L., Grachev, V., Konovalova, N., Managadze, A., Okateva, N., Polukhina, N., et al., Muon radiography method for non-invasive probing an archaeological site in the Naryn-Kala citadel, Appl. Sci., 2019, vol. 9, no. 10, p. 2040. https://doi.org/10.3390/app9102040

    Article  Google Scholar 

  12. Konovalova, N.S., Konovalov, A.S., Okateva, N.M., Starkov, N.I., and Shchedrina, T.V., Exploration of underground structures in the Holy Trinity Danilov Monastery by muon radiography method, Bull. Lebedev Phys. Inst., 2021, vol. 48, no. 6, pp. 175–180. https://doi.org/10.3103/S106833562106004X

    Article  ADS  Google Scholar 

  13. Aglietta, M., Alyea, E.D., Antonioli, P., et al. (LVD Collab.), Study of single muons with the Large Volume Detector at Gran Sasso Laboratory, Phys. Atom. Nucl., 2003, vol. 66, pp. 123–129. https://doi.org/10.1134/1.1540666

    Article  ADS  Google Scholar 

  14. Alexandrov, A., Konovalova, N., Okateva, N., Polukhina, N., Starkov, N., and Shchedrina, T., Upgrade and new applications of the automated high-tech scanning facility PAVICOM for data processing of track detectors, Measurement, 2022, vol. 187, p. 110244. https://doi.org/10.1016/j.measurement.2021.110244

  15. Melnichenko, I.A., Geoinformation modeling of the structure of soil surfaces obtained as a result of non-invasive research methods based on muography, Proc. XIX International forum-competition of students and young scientists “Actual problems of subsoil use, St. Petersburg, 2023.

  16. Alexandrov, A., Anokhina, A., Vasina, S., Gippius, A., Gorbunov, S., Grachev, V., Konovalova, N., Larionov, A., Managadze, A., Melnichenko, I., Okateva, N., Petrukhin, A., Polukhina, N., Roganova, T., Sadykov, Zh., et al., Nuclear emulsion detectors for the muography of underground structure of Holy Dormition Pskov-Caves Monastery, Phys. At. Nucl., 2023 (in press).

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 23-12-00054, program “Performance of fundamental and exploratory scientific research by independent scientific groups.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Shchedrina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.B., Anokhina, A.M., Vasina, S.G. et al. Muography of the Cave Church of the Holy Dormition Pskovo-Pechersky Monastery. Bull. Lebedev Phys. Inst. 50, 603–611 (2023). https://doi.org/10.3103/S1068335623120023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623120023

Keywords:

Navigation