Skip to main content
Log in

Measurement of the Hydrodynamic Efficiency of Laser Plasma at the “Kanal-2” Installation using Aluminum and Copper Targets

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The results of experimental measurements of the hydrodynamic efficiency of laser plasma for aluminum and copper targets are presented. The studies were performed on the “Kanal-2” laser setup system using the ballistic pendulum method. The pressure in the interaction chamber was 10−4 Torr, the pendulum length was 145 mm, the mass of the pendulum with a target was 7.2 g. At the half-height pulse duration of 2.5 ns, the power density on the target surface was ∼1013 W/cm2. In the case of aluminum target, the hydrodynamic efficiency coefficient increased from 1.5% to 4.5% with increasing laser pulse energy from 5 J to 10 J, whereas it remained at the level of 5% for the copper target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Anan’in, Yu. V. Afanas’ev, Yu. A. Bykovskii, and O. N. Krokhin, Laser Plasma. Physics and Applications (MIFI, Moscow, 2003) [in Russian].

    Google Scholar 

  2. Yu. V. Afanas’ev, N. G. Basov, O. N. Krokhin, et al., Interaction of High-Power Laser Radiation with Plasma, Itogi Nauki i Tekhniki. Radiotekhnika, Vol. 17 (VINITI, Moscow, 1978) [in Russian].

    Google Scholar 

  3. D. W. Gregg and S. J. Thomas, J. Appl. Phys. 37, 2787 (1966).

    Article  ADS  Google Scholar 

  4. B. H. Ripin, R. Decoste, S. P. Obenschain, et al., Phys. Fluids 23, 1012 (1980); doi: 10.1063/1.863084.

    Article  ADS  Google Scholar 

  5. M. H. Key, W. T. Toner, T. J. Goldsack, et al., Phys. Fluids 26, 2011 (1983); doi: 10.1063/1.864348.

    Article  ADS  Google Scholar 

  6. H. Nishimura, H. Azechi, K. Yamada, et al., Phys. Rev. A 23(4), 2011 (1981).

    Article  ADS  Google Scholar 

  7. C. Garban-Labaune, E. Fabre, C. Max, et al., Phys. Fluids 28, 2580 (1985); doi: 10.1063/1.865266.

    Article  ADS  Google Scholar 

  8. D. Batani, H. Stabile, A. Ravasio, et al., Phys. Rev. E 68, 067403 (2003).

    Article  ADS  Google Scholar 

  9. B. Meyer and G. Thiell, Phys. Fluids 27, 302 (1984); doi: 10.1063/1.864483.

    Article  ADS  Google Scholar 

  10. P. D. Gupta and S.R. Kumbhare, J. Appl. Phys. 55, 120 (1984); doi: 10.1063/1.332875.

    Article  ADS  Google Scholar 

  11. S. I. Fedotov, L. P. Feoktistov, M. V. Osipov, et al., J. Russ. Laser Res. 25, 79 (2004).

    Article  Google Scholar 

  12. Helios Nanolab DualBeam. Fei. (2013). https://doi.org/www.fei.com/products/dualbeams/helios-nanolab.aspx.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Sahakyan.

Additional information

Original Russian Text © N.V. Izotov, V.N. Puzyrev, A.T. Sahakyan, A.N. Starodub, O.F. Yakushev, 2018, published in Kratkie Soobshcheniya po Fizike, 2018, Vol. 45, No. 7, pp. 3–8.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izotov, N.V., Puzyrev, V.N., Sahakyan, A.T. et al. Measurement of the Hydrodynamic Efficiency of Laser Plasma at the “Kanal-2” Installation using Aluminum and Copper Targets. Bull. Lebedev Phys. Inst. 45, 195–198 (2018). https://doi.org/10.3103/S1068335618070011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335618070011

Keywords

Navigation