Skip to main content
Log in

Effect of Rolling Process on Microstructures and Mechanical Properties of High Strain-Rate Rolled ZK60 Magnesium Alloy

  • PRESSURE TREATMENT OF METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A high strain-rate rolling (HSRR) process was successfully used to produce a ZK60 magnesium alloy sheet with a strength-toughness balance. In one-pass rolling, as the rolling rate increases, the edge cracking of the sheets decreases and the grain size increases continuously, and the grain size ranges from 1.4 μm at 5 s–1 to 4.2 μm at 25 s–1. When the strain rate is 5 s–1, the tensile strength and elongation of the ZK60 magnesium alloy are 355 MPa and 12.40%, respectively. As the rolling rate increases, the tensile strength decreases from 355 to 310 MPa. When the rolling rate is less than 20 s–1, the texture strength decreases with the strain rate, from 9.064 at 5 s–1 to 4.480 at 20 s–1, but when the strain rate is 25 s–1, the texture increases to 7.099. At the same time, the study also found that the two-pass rolling process can weaken the texture and increase the tensile strength. The texture strength decreased from 9.04 in a one-pass rolling process to 8.528, and the tensile strength increased from 355 MPa in a one-pass rolling process to 377 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Dhahri, M., Masse, J.E., Mathieu, J.F., Barreau, G., and Autric, M., Laser welding of AZ91 and WE43 magnesium alloys for automotive and aerospace industries, Adv. Eng. Mater., 2001, vol. 3, no. 7, pp. 504–507.

    Article  CAS  Google Scholar 

  2. Chen, C., Chen, J.H., Yan, H.G., Su, B., Song, M., and Zhu, S.Q., Dynamic precipitation, microstructure and mechanical properties of Mg-5Zn-1Mn alloy sheets prepared by high strain-rate rolling, Mater. Des., 2016, vol. 100, pp. 58–66.

    Article  CAS  Google Scholar 

  3. Wan, D.Q., Wang, H.B., Ye, S.T., Hu, Y.L., and Li, L.L., The damping and mechanical properties of magnesium alloys balanced by aluminum addition, J. Alloys Compd., 2019, vol. 782, pp. 421–426.

    Article  CAS  Google Scholar 

  4. Zhu, S.Q., Yan, H.G., Chen, J.H., Wu, Y.Z., Su, B., Du, Y.G., and Liao, X.Z., Feasibility of high strain-rate rolling of a magnesium alloy across a wide temperature range, Scr. Mater., 2012, vol. 67, no. 4, pp. 404–407.

    Article  CAS  Google Scholar 

  5. Liu, X., Wang, Y.Y., Zhu, B.W., Xie, C., Sun, Y.P., and Yang, H., Effect of microstructures and textures on the anisotropy of mechanical properties of AZ31 magnesium alloy sheets subjected to high strain rate rolling, Mater. Res. Express, 2019, vol. 6, no. 10, pp. 1–5.

    Google Scholar 

  6. Zhu, B., Liu, X., Xie, C., Su, J., Guo, P., Tang, C., and Liu, W., Unveiling the underlying mechanism of forming edge cracks upon high strain-rate rolling of magnesium alloy, J. Mater. Sci. Technol., 2020, vol. 50, pp. 59–65.

    Article  Google Scholar 

  7. Ma, Y.L., Pan, F.S., and Zuo, R.L., Review on the research of high-strength wrought magnesium alloy ZK60, J. Chongqing Univ., 2004, vol. 27, no. 9, pp. 80–85.

    CAS  Google Scholar 

  8. Xv, S.T., Qim, Z., Qin, Z., Liu, T., and Jing, C.N., Effects of severe plastic deformation on microstructure and mechanical properties of bulk AZ31 magnesium alloys, Nonferrous Met. Sci. Eng., 2012, vol. 22, pp. s61–s67.

    Article  Google Scholar 

  9. Huang, B., Yan, H.G., Chen, J.H., Xia, W.J., Su, B., and Cheng, M.X., Effects of rolling process parameters on microstructure and tensile properties of ZK60 magnesium alloy, Mater. Mech. Eng., 2018, vol. 42, no. 6, pp. 69–73.

    Article  Google Scholar 

  10. Zhu, S.Q., Yan, H.G., Chen, J.H., Wu, Y.Z., Du, Y.G., and Liao, X.Z., Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range, Mater. Sci. Eng., A, 2013, vol. 559, pp. 765–772.

    Article  CAS  Google Scholar 

  11. Chen, J.H., Chen, G.Q., Yan, H.G., Su, B., Gong, X.L., and Zhou, B., Correlation between microstructure and corrosion resistance of magnesium alloys prepared by high strain rate rolling, J. Mater. Eng. Perform., 2017, vol. 26, no. 10, pp. 4748–4759.

    Article  CAS  Google Scholar 

  12. Chen, C., Chen, J.H., Yan, H.G., Su, B., Song, M., and Zhu, S.Q., Dynamic precipitation, microstructure and mechanical properties of Mg-5Zn-1Mn alloy sheets prepared by high strain-rate rolling, Mater. Des., 2016, vol. 100, pp. 58–66.

    Article  CAS  Google Scholar 

  13. Feng, X.H., Sun, Y.P., Lu, Y.W., He, J.M., Liu, X., and Wan, S.Y., Effect of the strain rate on the damping and mechanical properties of a ZK60 magnesium alloy, Materials, 2020, vol. 13, no. 13, p. 2696.

    Article  Google Scholar 

  14. Liu, X., Zhu, B.W., Wu, Y.Z., Wang, Y.Y., Tang, C.P., and Liu, W.H., Edge crack, microstructure and mechanical property of AZ31 magnesium alloy sheets rolled by medium-high strain rate, Chin. J. Nonferrous Met., 2019, vol. 29, no. 2, pp. 232–240.

    Google Scholar 

  15. Mirzadeh, H., Constitutive behaviors of magnesium and Mg-Zn-Zr alloy during hot deformation, Mater. Chem. Phys., 2015, vol. 152, pp. 123–126.

    Article  CAS  Google Scholar 

  16. Su, J., Sanjari, M., Kabir, A.S.H., Jung, I.-H., Jonas, J.J., Yue, S., and Utsunomiya, H., Characteristics of magnesium AZ31 alloys subjected to high speed rolling, Mater. Sci. Eng., A, 2015, vol. 636, pp. 582–592.

    Article  CAS  Google Scholar 

  17. Zhu, S.Q., Yan, H.G., Chen, J.H., Wu, Y.Z., Liu, J.Z., and Tian, J., Effect of twinning and dynamic recrystallization on the high strain rate rolling process, Scr. Mater., 2010, vol. 63, no. 10, pp. 985–988.

    Article  CAS  Google Scholar 

  18. Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K.U., Yi, S.B., and Letzig, D., Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scr. Mater., 2010, vol. 63, no. 7, pp. 725–730.

    Article  CAS  Google Scholar 

  19. Al-Samman, T., Li, X., and Chowdhury, S.G., Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy, Mater. Sci. Eng., A, 2010, vol. 527, no. 15, pp. 3450–3463.

    Article  Google Scholar 

  20. Tong, L.B., Li, X., Zhang, D.P., Cheng, L.R., Meng, J., and Zhang, H.J., Dynamic recrystallization and texture evolution of Mg-Y-Zn alloy during hot extrusion process, Mater. Charact., 2014, vol. 92, pp. 77–83.

    Article  CAS  Google Scholar 

  21. Ding, H.L., Wang, T.Y., Xu, C.Z., and Li, D.K., Effects of Ca addition and deformation conditions on microstructure and texture of Mg-Zn alloy, Chin. J. Nonferrous Met., 2015, vol. 25, no. 5, pp. 1142–1152.

    CAS  Google Scholar 

  22. L, L.W., Liu, C.M., Zhao, J., Zeng, W.B., and Wang, Z.C., Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method, J. Alloys Compd., 2015, vol. 628, pp. 130–134.

  23. Hall, E.O., The Deformation and aging of mild steel: III. Discussion of results, Proc. Phys. Soc. Sect. B, 1951, vol. 64, no. 9, pp. 747–753.

    Article  Google Scholar 

  24. Petch, N.J., The cleavage strength of polycrystals, J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  25. Barabash, R.I., Rollett, A., Lebensohn, R.A., Barabash, O.M., Liu, W., and Pang, J.W.L., Twin boundary-induced intrinsic strengthening in Ni, Thin Solid Films, 2013, vol. 530, pp. 14–19.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge research support from the Guangxi Natural Science Foundation Project (2016GXNSFDA380008), as well as from the Liuzhou Science and Technology Development Plan Project (2017BD20301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youping Sun.

Additional information

ORCID iDs

Youping Sun: https://orcid.org/0000-0001-6610-517X

XVhui Feng: https://orcid.org/0000-0002-3372-5900

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Sun, Y., Feng, X. et al. Effect of Rolling Process on Microstructures and Mechanical Properties of High Strain-Rate Rolled ZK60 Magnesium Alloy. Russ. J. Non-ferrous Metals 61, 658–666 (2020). https://doi.org/10.3103/S1067821220060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220060073

Navigation