Skip to main content
Log in

Characterizing Existence and Location of the ML Estimate in the Conway–Maxwell–Poisson Model

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

As a flexible extension of the common Poisson model, the Conway–Maxwell–Poisson distribution allows for describing under- and overdispersion in count data via an additional parameter. Estimation methods for two Conway–Maxwell–Poisson parameters are then required to specify the model. In this work, two characterization results are provided related to maximum likelihood estimation of the Conway–Maxwell–Poisson parameters. The first states that maximum likelihood estimation fails if and only if the range of the observations is less than two. Assuming that the maximum likelihood estimate exists, the second result then comprises a simple necessary and sufficient condition for the maximum likelihood estimate to be a solution of the likelihood equation; otherwise it lies on the boundary of the parameter set. A simulation study is carried out to investigate the accuracy of the maximum likelihood estimate in dependence of the range of the underlying observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

REFERENCES

  1. O. A. Adeoti, J.-C. Malela-Majika, S. C. Shongwe, and M. Aslam, ‘‘A homogeneously weighted moving average control chart for Conway–Maxwell Poisson distribution,’’ Journal of Applied Statistics 49 (12), 3090–3119 (2022).

    Article  MathSciNet  Google Scholar 

  2. N. Balakrishnan, S. Barui, and F. S. Milienos, ‘‘Piecewise linear approximations of baseline under proportional hazards based COM-Poisson cure models,’’ Communications in Statistics—Simulation and Computation (2022).

  3. O. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory (Wiley, Chichester, 2014).

    Book  Google Scholar 

  4. S. Bedbur and U. Kamps, ‘‘Uniformly most powerful unbiased tests for the dispersion parameter of the Conway–Maxwell–Poisson distribution,’’ Statistics and Probability Letters 196, 109801 (2023).

  5. S. Bedbur, U. Kamps, and A. Imm, ‘‘On the existence of maximum likelihood estimates for the parameters of the Conway–Maxwell–Poisson distribution,’’ ALEA—Latin American Journal of Probability and Mathematical Statistics 20, 561–577 (2023).

    MathSciNet  Google Scholar 

  6. A. Benson and N. Friel, ‘‘Bayesian inference, model selection and likelihood estimation using fast rejection sampling: The Conway–Maxwell–Poisson distribution,’’ Bayesian Analysis 16 (3), 905–931 (2021).

    Article  MathSciNet  Google Scholar 

  7. Ch. Chanialidis, L. Evers, T. Neocleous, and A. Nobile, ‘‘Efficient Bayesian inference for COM-Poisson regression models,’’ Statistics and Computing 28, 595–608 (2018).

    Article  MathSciNet  Google Scholar 

  8. S. B. Chatla and G. Shmueli, ‘‘A tree-based semi-varying coefficient model for the COM-Poisson distribution,’’ Journal of Computational and Graphical Statistics 29 (4), 827–846 (2020).

    Article  MathSciNet  Google Scholar 

  9. R. W. Conway and W. L. Maxwell, ‘‘A queuing model with state dependent service rates,’’ Journal of Industrial Engineering 12, 132–136 (1964).

    Google Scholar 

  10. F. Daly and R. E. Gaunt, ‘‘The Conway–Maxwell–Poisson distribution: Distributional theory and approximation,’’ ALEA—Latin American Journal of Probability and Mathematical Statistics 13, 635–658 (2016).

    MathSciNet  Google Scholar 

  11. A. Huang and A. S. I. Kim, ‘‘Bayesian Conway–Maxwell–Poisson regression models for overdispersed and underdispersed counts,’’ Communications in Statistics—Theory and Methods 50 (13), 3094–3105 (2021).

    Article  MathSciNet  Google Scholar 

  12. T. Kang, S. M. Levy, and S. Datta, ‘‘Analyzing longitudinal clustered count data with zero inflation: Marginal modeling using the Conway–Maxwell–Poisson distribution,’’ Biometrical Journal 63 (4), 761–786 (2021).

    Article  MathSciNet  Google Scholar 

  13. C. C. Kokonendji, D. Mizère, and N. Balakrishnan, ‘‘Connections of the Poisson weight function to overdispersion and underdispersion,’’ Journal of Statistical Planning and Inference 138 (5), 1287–1296 (2008).

    Article  MathSciNet  Google Scholar 

  14. S. Kotz, N. Balakrishnan, and N. L. Johnson, Continuous Multivariate Distributions, Models, and Applications (Wiley, New York, 2nd ed., 2000).

    Book  Google Scholar 

  15. P. N. Krivitsky, ‘‘Exponential-family random graph models for valued networks,’’ Electronic Journal of Statistics 6, 1100–1128 (2012).

    Article  MathSciNet  Google Scholar 

  16. U. Mammadova and M. R. Özkale, ‘‘Conway–Maxwell Poisson regression-based control charts under iterative Liu estimator for monitoring count data,’’ Applied Stochastic Models in Business and Industry 38 (4), 695–725 (2022).

    Article  MathSciNet  Google Scholar 

  17. M. S. Melo and A. P. Alencar, ‘‘Conway–Maxwell–Poisson seasonal autoregressive moving average model,’’ Journal of Statistical Computation and Simulation 92 (2), 283–299 (2022).

    Article  MathSciNet  Google Scholar 

  18. S. H. Ong and R. C. Gupta, ‘‘Tiefeng Ma, and Shin Z. Sim. Bivariate Conway–Maxwell Poisson distributions with given marginals and correlation,’’ Journal of Statistical Theory and Practice 15, 10 (2021).

    Article  Google Scholar 

  19. L. S. C. Piancastelli, N. Friel, W. Barreto-Souza, and H. Ombao, ‘‘Multivariate Conway–Maxwell–Poisson distribution: Sarmanov method and doubly intractable Bayesian inference,’’ Journal of Computational and Graphical Statistics, 32 (2), 483–500 (2023).

    Article  MathSciNet  Google Scholar 

  20. K. F. Sellers, Sh. Borle, and G. Shmueli, ‘‘The COM-Poisson model for count data: A survey on methods and applications,’’ Applied Stochastic Models in Business and Industry 28 (2), 104–116 (2012).

    Article  MathSciNet  Google Scholar 

  21. K. F. Sellers, A. W. Swift, and K. S. Weems. ‘‘A flexible distribution for count data,’’ Journal of Statistical Distributions and Applications 4 (22) (2017).

  22. G. Shmueli, T. P. Minka, J. B. Kadane, Sh. Borle, and P. Boatwright, ‘‘A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution,’’ Journal of the Royal Statistical Society: Series C (Applied Statistics) 54 (1), 127–142 (2005).

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bedbur.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedbur, S., Imm, A. & Kamps, U. Characterizing Existence and Location of the ML Estimate in the Conway–Maxwell–Poisson Model. Math. Meth. Stat. 33, 70–78 (2024). https://doi.org/10.3103/S1066530724700042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530724700042

Keywords:

Navigation