Skip to main content
Log in

First Principles Search for Novel Ultrahard High-Density Carbon Allotropes: Hexagonal C6, C9, and C12

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Hexagonal carbon allotropes C6, C9, and C12 with qtz, sta and lon topologies, respectively, were predicted on the basis of crystal chemistry and first principles (DFT) calculations. The new allotropes are mechanically (elastic properties) and dynamically (phonons) stable phases and are characterized by ultra-high Vickers hardness, exceptionally high for qtz C6 and C12, close to the previously studied qtz C3. The electronic band structures of all new allotropes show semi-conducting to insulating behavior. lon C12 can be considered as novel “superlonsdaleite.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Oganov, A.R., Crystal structure prediction: Reflections on present status and challenges, Faraday Discuss., 2018, vol. 211, pp. 643–660.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Y., Lv, J., Zhu, L., and Ma, Y., CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun., 2012, vol. 183, pp. 2063–2070.

    Article  CAS  Google Scholar 

  3. Hoffmann, R., Kabanov, A.A., Golov, A.A., and Proserpio, D.M., Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem., Int. Ed., 2016, vol. 55, pp. 10962–10976. Samara Carbon Allotrope Database (SACADA) database. http://www.sacada.info.

    Article  CAS  Google Scholar 

  4. Shevchenko, A.P., Shabalin, A.A., Karpukhin, I.Yu., and Blatov, V.A., Topological representations of crystal structures: Generation, analysis and implementation in the TopCryst system, Sci. Technol. Adv. Mater., 2022, vol. 2, pp. 250–265.

    Google Scholar 

  5. Matar, S.F., CCDC 2233635: Crystal Structure Determination, 2022. https://doi.org/10.5517/ccdc.csd.cc2dz8rf

  6. Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev. B, 1964, vol. 136, pp. 864–871.

    Article  Google Scholar 

  7. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, vol. 140, pp. 1133–1138.

    Article  Google Scholar 

  8. Luo, B., Wu, L., Zhang, Z., Li, G., and Tian, E., A triatomic carbon and derived pentacarbides with superstrong mechanical properties, iScience, 2022, vol. 25, p. 104712.

  9. Zhu, Q., Oganov, A.R., Salvadó, M.A., Pertierra, P., and Lyakhov, A.O., Denser than diamond: Ab initio search for superdense carbon allotropes, Phys. Rev. B, 2011, vol. 83, p. 193410.

    Article  Google Scholar 

  10. Öhrström, L. and O’Keeffe, M., Network topology approach to new allotropes of the group 14 elements, Z. Kristallogr., 2013, vol. 228, pp. 343–346.

    Article  Google Scholar 

  11. Matar, S.F., Etourneau, J., and Solozhenko, V.L., First-principles investigations of tricarbon: From the isolated C3 molecule to a novel ultra-hard anisotropic solid, Carbon Trends, 2022, vol. 6, p. 100132.

    Article  CAS  Google Scholar 

  12. Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, vol. 54, p. 11169.

    Article  CAS  Google Scholar 

  13. Kresse, G. and Joubert, J., From ultrasoft pseudopotentials to the projector augmented wave, Phys. Rev. B, 1994, vol. 59, pp. 1758–1775.

    Article  Google Scholar 

  14. Perdew, J., Burke, K., and Ernzerhof, M., The Generalized Gradient Approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  15. Heyd, J., Scuseria, G.E., and Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 2006, vol. 124, p. 219906.

    Article  Google Scholar 

  16. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes, New York: Cambridge Univ. Press, 1986, 2nd ed.

    Google Scholar 

  17. Blöchl, P.E., Jepsen, O., and Anderson, O.K., Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B, 1994, vol. 49, pp. 16223–16233.

    Article  Google Scholar 

  18. Methfessel, M. and Paxton, A.T., High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 1989, vol. 40, pp. 3616–3621.

    Article  CAS  Google Scholar 

  19. Monkhorst, H.J. and Pack, J.D., Special k-points for Brillouin Zone integration, Phys. Rev. B, 1976, vol. 13, pp. 5188–5192.

    Article  Google Scholar 

  20. Voigt, W., Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Ann. Phys., 1889, vol. 274, pp. 573–587.

    Article  Google Scholar 

  21. Togo, A. and Tanaka, I., First principles phonon calculations in materials science, Scr. Mater., 2015, vol. 108, pp. 1–5.

    Article  CAS  Google Scholar 

  22. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.

    Article  CAS  Google Scholar 

  23. Eyert, V., Basic notions and applications of the augmented spherical wave method, Int. J. Quantum Chem., 2000, vol. 77, pp. 1007–1031.

    Article  CAS  Google Scholar 

  24. Krishnan, R.S., Chandrasekharan, V., and Rajagopal, E.S., The four elastic constants of diamond, Nature, 1958, vol. 182, pp. 518–520.

    Article  Google Scholar 

  25. Wallace, D.C., Thermodynamics of Crystals, New York: Wiley, 1972.

    Book  Google Scholar 

  26. Brazhkin, V.V. and Solozhenko, V.L., Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible, J. Appl. Phys., 2019, vol. 125, p. 130901.

    Article  Google Scholar 

  27. Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., The interrelation between hardness and compressibility of substances and their structure and thermodynamic properties, J. Superhard Mater., 2008, vol. 30, pp. 368–378.

    Article  Google Scholar 

  28. Matar, S.F. and Solozhenko, V.L., Crystal chemistry and ab initio prediction of ultrahard rhombohedral B2N2 and BC2N, Solid State Sci., 2021, vol. 118, p. 106667.

    Article  CAS  Google Scholar 

  29. Solozhenko, V.L. and Matar, S.F., Prediction of novel ultrahard phases in the B–C–N system from first principles: Progress and problems, Materials, 2023, vol. 16, p. 886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lyakhov, A.O. and Oganov, A.R., Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B, 2011, vol. 84, p. 092103.

    Article  Google Scholar 

  31. Mazhnik, E. and Oganov, A.R., A model of hardness and fracture toughness of solids, J. Appl. Phys., 2019, vol. 126, p. 125109.

    Article  Google Scholar 

  32. Chen, X.Q., Niu, H., Li, D., and Li, Y., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 2011, vol. 19, pp. 1275–1281.

    Article  CAS  Google Scholar 

  33. O’Keeffe, M., Adams, G.B., and Sankey, O.F., Predicted new low energy forms of carbon, Phys. Rev. Lett., 1992, vol. 68, pp. 2325–2328.

    Article  PubMed  Google Scholar 

  34. Ownby, P.D., Yang, X., and Liu, J., Calculated X-ray diffraction data for diamond polytypes, J. Am. Ceram. Soc., 1992, vol. 75, pp. 1876–1883.

    Article  CAS  Google Scholar 

  35. Bindzus, N., Straasø, T., Wahlberg, N., Becker, J., Bjerg, L., Lock, N., Dippel, A.-C., and Iversen, B.B., Experimental determination of core electron deformation in diamond, Acta Crystallogr., Sect. A: Found. Adv., 2014, vol. 70, pp. 39–48.

    Article  CAS  Google Scholar 

  36. Krishnan, R.S., Raman spectrum of diamond, Nature, 1945, vol. 155, p. 171.

    Article  CAS  Google Scholar 

  37. Solozhenko, V.L. and Le Godec, Y., A hunt for ultrahard materials, J. Appl. Phys., 2019, vol. 126, p. 230401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Solozhenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matar, S.F., Solozhenko, V.L. First Principles Search for Novel Ultrahard High-Density Carbon Allotropes: Hexagonal C6, C9, and C12. J. Superhard Mater. 45, 239–248 (2023). https://doi.org/10.3103/S1063457623040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457623040056

Keywords:

Navigation