Skip to main content
Log in

Structure Formation in Silicon Carbide–Alumina Composites during Electroconsolidation

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Some possible methods for improving the hot pressing of SiC ceramics are reviewed. The method of liquid-phase sintering is described as a way to increase the physical and mechanical properties and to reduce the energy consumption of the pressing process. An example of liquid-phase sintering of silicon carbide ceramics by the method of hot pressing with use of a direct electric current for the introduction of a small amount of oxide impurities is given. The peculiarities of structure formation and the properties of the composite material based on silicon carbide micropowders, which is obtained by hot pressing in vacuum and heating with a direct high-ampere current transmitted through a graphite mold, are described. The microstructure and the physical and mechanical properties of composites of different compositions have been studied. The optimal composition of the initial mixture and the most optimal sintering temperature are determined. The comparison of the physical and mechanical properties of the obtained composite materials is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. Hereinafter, the composition of ceramics is given in wt %.

REFERENCES

  1. Huang, Q.-W. and Zhu, L.-H., High-temperature strength and toughness behaviors for reaction-bonded SiC ceramics below 1400°C, Mater. Lett., 2005, vol. 59, nos. 14–15, pp. 1732–1735.

    Article  CAS  Google Scholar 

  2. Gevorkyan, E.S., Rucki, M., Kagramanyan, A.A., and Nerubatskiy, V.P., Composite material for instrumental applications based on micro powder Al2O3 with additives nano-powder SiC, Int. J. Refract. Met. Hard Mater., 2019, vol. 82, pp. 336–339.

    Article  CAS  Google Scholar 

  3. Arellano-López, A.R., Martínez-Fernández, J., González, P., Domínguez, C., Fernández-Quero, V., and Singh, M., Biomorphic SiC: A new engineering ceramic material, Int. J. Appl. Ceram. Technol., 2005, vol. 1, no. 1, pp. 56–67.

    Article  Google Scholar 

  4. Gevorkyan, E., Mamalis, A., Vovk, R., Semiatkowski, Z., Morozow, D., Nerubatskyi, V., and Morozova, O., Special features of manufacturing cutting inserts from nanocomposite material Al2O3–SiC, J. Instrum., 2021, vol. 16, no. 10, P10015.

    Article  CAS  Google Scholar 

  5. Yaşar, Z.A. and Haber, R.A., Effect of carbon addition and mixture method on the microstructure and mechanical properties of silicon carbide, Materials, 2020, vol. 13, no. 17, 3768.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Biscay, N., Henry, L., Adschiri, T., Yoshimura, M., and Aymonier, C., Behavior of silicon carbide materials under dry to hydrothermal conditions, Nanomaterials, 2021, vol. 11, 1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bardakhanov, S.P., Goverdovskiy, V.N., Lee, C.-M., Lee, O.C., and Lygdenov, V.T., Analysis and alternate selection of nanopowder modifiers to improve a special protective coating system, Adv. Mater. Sci. Eng., 2017, vol. 2017, 2397238.

    Article  Google Scholar 

  8. Gevorkyan, E.S., Nerubatskyi, V.P., Chyshkala, V.O., and Morozova, O.M., Aluminum oxide nanopowders sintering at hot pressing using direct current, Mod. Sci. Res., 2020, no. 14 (1), pp. 12–18.

  9. Gevorkyan, E., Nerubatskyi, V., Chyshkala, V., and Morozova, O., Revealing specific features of structure formation in composites based on nanopowders of synthesized zirconium dioxide, East.-Eur. J. Enterp. Technol., 2021, vol. 5, no. 12 (113), pp. 6–19.

  10. Shukla, M., Ghosh, S., Dandapat, N., Mandal, A., and Balla, V., Comparative study on conventional sintering with microwave sintering and vacuum sintering of Y2O3–Al2O3–ZrO2 ceramics, J. Mater. Sci. Chem. Eng., 2016, vol. 4, pp. 71–78.

    CAS  Google Scholar 

  11. Borrell, A. and Dolores, M., Advanced ceramic materials sintered by microwave technology, in Sintering Technology—Method and Application, Intech, 2018.

  12. Gevorkyan, E., Rucki, M., Krzysiak, Z., Chishkala, V., Zurowski, W., Kucharczyk, W., Barsamyan, V., Nerubatskyi, V., Mazur, T., Morozow, D., Siemiątkowski, Z., and Caban, J., Analysis of the electroconsolidation process of fine-dispersed structures out of hot pressed Al2O3–WC nanopowders, Materials, 2021, vol. 14, no. 21, 6503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gevorkyan, E., Rucki, M., Sałaciński, T., Siemiątkowski, Z., Nerubatskyi, V., Kucharczyk, W., Chrzanowski, Ja., Gutsalenko, Yu., and Nejman, M., Feasibility of cobalt-free nanostructured WC cutting inserts for machining of a TiC/Fe composite, Materials, 2021, vol. 14, no. 12, 3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldberger, W.M. and Merkle, B.D., Electroconsolidation offers fast, low-cost densification, Met. Powder Rep., 2001, vol. 56, no. 2, pp. 30–33.

    Article  Google Scholar 

  15. Agrawal, D., Microwave sintering of ceramics, composites and metallic materials, and melting of glasses, Trans. Indian Ceram. Soc., 2006, vol. 65, no. 3, pp. 129–144.

    Article  CAS  Google Scholar 

  16. Mukasyan, A.S., Lin, Ya-Ch., Rogachev, A.S., and Moskovskikh, D.O., Direct combustion synthesis of silicon carbide nanopowder from the elements, J. Am. Ceram. Soc., 2013, vol. 96, no. 1, pp. 111–117.

    Article  CAS  Google Scholar 

  17. McCall, J.L., Scanning electron microscopy for microstructural analysis, in Microstructural Analysis, McCall, J.L. and Mueller, W.M., Eds., Boston: Springer, 1973, pp. 93–124.

    Book  Google Scholar 

  18. Gevorkyan, E., Nerubatskyi, V., Chyshkala, V., Gutsalenko, Y., and Morozova, O., Determining the influence of ultra-dispersed aluminum nitride impurities on the structure and physical-mechanical properties of tool ceramics, East.-Eur. J. Enterp. Technol., 2021, vol. 6, no. 12 (114), pp. 40–52.

  19. Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, pp. 1564–1583.

    Article  CAS  Google Scholar 

  20. Rad’ko, I.P. and Markhon’, M.V., Peculiarities of the study of the adhesion strength of composite contact materials with worn parts of electrical equipment, Tekh. Energ., 2016, no. 252, pp. 176–185.

  21. GOST (State Standard) 25.506-85: Calculations and Strength Tests. Methods of Mechanical Testing of Metals. Determination of Characteristics of Crack Resistance (Fracture Toughness) under Static Loading, Moscow: Izd. Standartov, 1985.

  22. Quinn, G.D., Fracture toughness of ceramics by the vickers indentation crack length method: A critical review, in Mechanical Properties and Performance of Engineering Ceramics II: Ceramic Engineering and Science Proceedings, 2006, vol. 27, pp. 45–62.

    Article  Google Scholar 

  23. Podrezov, Yu.M., Varbilo, D.G., Danilenko, V.I., Tsiganenko, N.I., Shurigin, B.V., and Romanko, P.M., Elektron. Mikrosk. Prochn. Mater., Ser: Fiz. Materialoved. Strukt. Svoistva Mater., 2018, vol. 24, pp. 35–46.

    Google Scholar 

  24. Wilkinson, D.S. and Ashby, M.F., Pressure sintering by powder law creep, Acta Metall., 1975, vol. 23, no. 11, pp. 1277–1285.

    Article  CAS  Google Scholar 

  25. Ageev, O.A., Belyaev, A.E., Boltovets, N.S., Kiselev, V.S., and Konakova, R.V., Karbid kremniya: tekhnologiya, svoistva, primenenie (Silicon Carbide: Technology, Properties, Application), Belyaev, A.E. and Konakova, R.V., Eds., Kharkiv: ISMA, 2010.

    Google Scholar 

  26. Sigl, L.S., Thermal conductivity of liquid phase sintered silicon carbide, J. Eur. Ceram. Soc., 2003, vol. 23, no. 7, pp. 1115–1122.

    Article  CAS  Google Scholar 

  27. Vorotilo, S., Patsera, E., Shvindina, N., Rupasov, S., and Levashov, E., Effect of in situ grown SiC nanowires on the pressureless sintering of heterophase ceramics TaSi2–TaC–SiC, Materials, 2020, vol. 13, no. 15, 3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomez, E., Echeberria, J., Iturriza, I., and Castro, F.J., Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2, J. Eur. Ceram. Soc., 2004, vol. 24, no. 9, pp. 2895–2903.

    Article  CAS  Google Scholar 

  29. Jerebtsov, D.A., Mikhailov, G.G., and Sverdina, S.V., Phase diagram of the system: Al2O3–ZrO2, Ceram. Int., 2000, vol. 26, no. 8, pp. 821–823.

    Article  CAS  Google Scholar 

  30. Gevorkyan, E., Nerubatskyi, V., Gutsalenko, Yu., Melnik, O., and Voloshyna, L., Examination of patterns in obtaining porous structures from submicron aluminum oxide powder and its mixtures, East.-Eur. J. Enterp. Technol., 2020, vol. 6, no. 6 (108), pp. 41–49.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Gevorkyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorkyan, E.S., Nerubatskyi, V.P., Vovk, R.V. et al. Structure Formation in Silicon Carbide–Alumina Composites during Electroconsolidation. J. Superhard Mater. 44, 339–349 (2022). https://doi.org/10.3103/S1063457622050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457622050033

Keywords:

Navigation