Skip to main content
Log in

Strengthening Superhard Materials by Nanostructure Engineering

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Traditional superhard materials mainly including diamond and cubic boron nitride are indispensable to scientific research in many fields and numerous industrial applications, especially as cutting and machining tools. Relentless search for new superhard systems with mechanical properties surpassing those of traditional ones has inspired tremendous experimental efforts over the past few decades. On the other hand, enhancing mechanical properties of traditional superhard materials via nanostructuring proved to be an effective approach. A number of recent experiments towards fabricating nanostructured diamond and cubic boron nitride under high-pressure and high-temperature conditions have led to record hardness of ~200 and ~110 GPa, respectively, nearly twice those of their single-crystal counterparts. Armed with largely strengthened toughness and thermal stability as well, these nanocrystalline forms of traditional superhard materials have great potential for the next-generation superhard material applications. However, to date, knowledge on such nanostructured superhard materials is still scarce, and there are many mysteries surrounding the formation mechanism, effects of pressure and temperature on the growth of nanograins and defects (e.g., nano-twins), and underlying strengthening mechanism of nano effect on mechanical properties, and so on. A review of this hot topic is necessary and would provide important guidance for future studies of superhard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials, Kanyanta, V., Ed., Cham: Springer, 2016.

    Google Scholar 

  2. Le Godec, Y., Courac, A., and Solozhenko, V.L., High-pressure synthesis of superhard and ultrahard materials, J. Appl. Phys., 2019, vol. 126, no. 15, p. 151 102.

    Article  Google Scholar 

  3. Wort, C.J.H., Applications for superhard and ultra-hard materials, in Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials, Kanyanta, V., Ed., Cham: Springer, 2016, Ch. 2, pp. 25–74.

    Google Scholar 

  4. Lawn, B.R. and Marshall, D.B., Hardness, toughness, and brittleness: An indentation analysis, J. Am. Ceram. Soc., 1979, vol. 62, nos. 7–8, pp. 347–350.

    Article  CAS  Google Scholar 

  5. Vepřek, S., The search for novel, superhard materials, J. Vac. Sci. Technol., A, 1999, vol. 17, no. 5, pp. 2401–2420.

    Article  Google Scholar 

  6. Haines, J., Jm, L., and Bocquillon, G., Synthesis and design of superhard materials, Annu. Rev. Mater. Res., 2001, vol. 1955, no. 31, pp. 1–23. https://doi.org/10.1146/annurev.matsci.31.1.1

  7. He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T.D., and Zerda, T.W., Boron suboxide: As hard as cubic boron nitride, Appl. Phys. Lett., 2002, vol. 81, no. 4, pp. 643–645.

    Article  CAS  Google Scholar 

  8. Kaner, R.B., Designing superhard materials, Science, 2005, vol. 308, no. 5726, pp. 1268–1269.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, S., Gong, X.G., and Wei, S.-H., Superhard pseudocubic BC2N superlattices, Phys. Rev. Lett., 2007, vol. 98, no. 1, article 015 502.

    Article  Google Scholar 

  10. Yang, J., Sun, H., and Chen, C., Is osmium diboride an ultra-hard material?, J. Am. Chem. Soc., 2008, vol. 130, no. 23, pp. 7200–7201.

    Article  CAS  PubMed  Google Scholar 

  11. Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., et al., Ultrahard nanotwinned cubic boron nitride, Nature, 2013, vol. 493, no. 7432, pp. 385–388.

    Article  CAS  PubMed  Google Scholar 

  12. Oganov, A.R., Lyakhov, A.O., and Zhu, Q., Theory of superhard materials, in Comprehensive Hard Materials, Amsterdam: Elsevier, 2014, vol. 3, pp. 59–79.

    Google Scholar 

  13. Xu, B. and Tian, Y., Superhard materials: Recent research progress and prospects, Sci. China Mater., 2015, vol. 58, no. 2, рр. 132–142.

  14. Liu, G., Kou, Z., Yan, X., Lei, L., Peng, F., Wang, Q., Wang, K., Wang, P., Li, L., Li, Y., et al., Submicron cubic boron nitride as hard as diamond, Appl. Phys. Lett., 2015, vol. 106, no. 12, article 121 901.

    Article  Google Scholar 

  15. Mansouri Tehrani, A., Oliynyk, A.O., Parry, M., Rizvi, Z., Couper, S., Lin, F., Miyagi, L., Sparks, T.D., and Brgoch, J., Machine learning directed search for ultraincompressible, superhard materials, J. Am. Chem. Soc., 2018, vol. 140, no. 31, pp. 9844–9853.

    Article  CAS  PubMed  Google Scholar 

  16. Brazhkin, V.V. and Solozhenko, V.L., Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible, J. Appl. Phys., 2019, vol. 125, no. 13, article 130901.

    Article  Google Scholar 

  17. Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H., Man-made diamonds, Nature, 1955, vol. 176, no. 4471, pp. 51–55.

    Article  CAS  Google Scholar 

  18. Wentorf, R.H., Cubic form of boron nitride, J. Chem. Phys., 1957, vol. 26, no. 4, р. 956.

  19. Westraadt, J.E., Sigalas, I., and Neethling, J.H., Characterization of thermally degraded polycrystalline diamond, Int. J. Refract. Met. Hard Mater., 2015, vol. 48, pp. 286–292.

    Article  CAS  Google Scholar 

  20. Brookes, C.A. and Brookes, E.J., Diamond in perspective: A review of mechanical properties of natural diamond, Diamond Relat. Mater., 1991, vol. 1, no. 1, pp. 13–17.

    Article  CAS  Google Scholar 

  21. Brazhkin, V.V., Lyapin, A.G., and Hemley, R.J., Harder than diamond: Dreams and reality, Philos. Mag. A, 2002, vol. 82, no. 2, рр. 231–253.

    Article  CAS  Google Scholar 

  22. Riedel, R., Novel ultrahard materials, Adv. Mater., 1994, vol. 6, nos. 7–8, pp. 549–560.

    Article  CAS  Google Scholar 

  23. Gilman, J.J., Cumberland, R.W., and Kaner, R.B., Design of hard crystals, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, nos. 1–2, pp. 1–5.

    Article  CAS  Google Scholar 

  24. Ivanovskii, A.L., The search for novel superhard and incompressible materials on the basis of higher borides of s, p, d metals, J. Superhard Mater., 2011, vol. 33, no. 2, pp. 73–87.

    Article  Google Scholar 

  25. Veprek, S., Recent search for new superhard materials: Go nano!, J. Vac. Sci. Technol., A, 2013, vol. 31, no. 5, article 050822.

    Article  Google Scholar 

  26. Zhao, Y., Qian, J., Daemen, L.L., Pantea, C., Zhang, J., Voronin, G.A., and Zerda, T.W., Enhancement of fracture toughness in nanostructured diamond-SiC composites, Appl. Phys. Lett., 2004, vol. 84, no. 8, pp. 1356–1358.

    Article  CAS  Google Scholar 

  27. Liu, A.Y. and Cohen, M.L., Prediction of new low compressibility solids, Science, 1989, vol. 245, no. 4920, pp. 841–842.

    Article  CAS  PubMed  Google Scholar 

  28. Gao, F., He, J., Wu, E., Liu, S., Yu, D., Li, D., Zhang, S., and Tian, Y., Hardness of covalent crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, pp. 1–4.

    Article  Google Scholar 

  29. Šimůnek, A. and Vackář, J., Hardness of covalent and ionic crystals: First-principle calculations, Phys. Rev. Lett., 2006, vol. 96, no. 8, pp. 5–8.

    Article  Google Scholar 

  30. Guo, X., Li, L., Liu, Z., Yu, D., He, J., Liu, R., Xu, B., Tian, Y., and Wang, H.-T., Hardness of covalent compounds: Roles of metallic component and d valence electrons, J. Appl. Phys., 2008, 104, no. 2, article 023503.

    Article  Google Scholar 

  31. Chen, X.-Q., Niu, H., Li, D., and Li, Y., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 2011, vol. 19, no. 9, pp. 1275–1281.

    Article  CAS  Google Scholar 

  32. Tian, Y., Xu, B., and Zhao, Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater., 2012, vol. 33, pp. 93–106.

    Article  CAS  Google Scholar 

  33. Sung, C.-M. and Sung, M., Carbon nitride and other speculative superhard materials, Mater. Chem. Phys., 1996, vol. 43, no. 1, pp. 1–18.

    Article  CAS  Google Scholar 

  34. Jiang, X., Zhao, J., and Jiang, X., Correlation between hardness and elastic moduli of the covalent crystals, Comput. Mater. Sci., 2011, vol. 50, no. 7, pp. 2287–2290.

    Article  CAS  Google Scholar 

  35. Teter, D.M., Computational alchemy: The search for new superhard materials, MRS Bull., 1998, vol. 23, no. 1, pp. 22–27.

    Article  CAS  Google Scholar 

  36. Li, K., Wang, X., Zhang, F., and Xue, D., Electronegativity identification of novel superhard materials, Phys. Rev. Lett., 2008, vol. 100, no. 23, pp. 1–4.

    Article  Google Scholar 

  37. Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On the hardness of a new boron phase, orthorhombic γ-B28, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 428–429.

    Article  Google Scholar 

  38. Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M., Ultimate metastable solubility of boron in diamond: Synthesis of superhard diamondlike BC5, Phys. Rev. Lett., 2009, vol. 102, no. 1, article 015506.

    Article  PubMed  Google Scholar 

  39. Zhang, M., Liu, H., Li, Q., Gao, B., Wang, Y., Li, H., Chen, C., and Ma, Y., Superhard BC3 in cubic diamond structure, Phys. Rev. Lett., 2015, vol. 114, no. 1, pp. 1–5.

    Article  Google Scholar 

  40. Zhao, Y., He, D.W., Daemen, L.L., Shen, T.D., Schwarz, R.B., Zhu, Y., Bish, D.L., Huang, J., Zhang, J., Shen, G., et al., Superhard B–C–N materials synthesized in nanostructured bulks, J. Mater. Res., 2002, vol. 17, no. 12, pp. 3139–3145.

    Article  CAS  Google Scholar 

  41. Tang, M., He, D., Wang, W., Wang, H., Xu, C., Li, F., and Guan, J., Superhard solid solutions of diamond and cubic boron nitride, Scr. Mater., 2012, vol. 66, no. 10, pp. 781–784.

    Article  CAS  Google Scholar 

  42. Levine, J.B., Tolbert, S.H., and Kaner, R.B., Advancements in the search for superhard ultra-incompressible metal borides, Adv. Funct. Mater., 2009, vol. 19, no. 22, pp. 3519–3533.

    Article  CAS  Google Scholar 

  43. Chung, H.Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J.M., Tolbert, S.H., and Kaner, R.B., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 2007, vol. 316, no. 5823, pp. 436–439.

    Article  CAS  PubMed  Google Scholar 

  44. Cumberland, R.W., Weinberger, M.B., Gilman, J.J., Clark, S.M., Tolbert, S.H., and Kaner, R.B., Osmium diboride, an ultra-incompressible, hard material, J. Am. Chem. Soc., 2005, vol. 127, no. 20, pp. 7264–7265.

    Article  CAS  PubMed  Google Scholar 

  45. Gou, H., Dubrovinskaia, N., Bykova, E., Tsirlin, A.A., Kasinathan, D., Schnelle, W., Richter, A., Merlini, M., Hanfland, M., Abakumov, A.M., et al., Discovery of a superhard iron tetraboride superconductor, Phys. Rev. Lett., 2013, vol. 111, no. 15, pp. 1–5.

  46. Ono, S., Kikegawa, T., and Ohishi, Y., A high-pressure and high-temperature synthesis of platinum carbide, Solid State Commun., 2005, vol. 133, no. 1, pp. 55–59.

    Article  CAS  Google Scholar 

  47. Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Zaug, J.M., Aberg, D., Meng, Y., and Prakapenka, V.B., Synthesis and characterization of nitrides of iridium and palladium, J. Mater. Res., 2008, vol. 23, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  48. Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.J., and Mao, H.K., Synthesis of novel transition metal nitrides IrN2 and OsN2, Phys. Rev. Lett., 2006, vol. 96, no. 15, рр. 1–4.

  49. Qin, J., He, D., Wang, J., Fang, L., Lei, L., Li, Y., Hu, J., Kou, Z., and Bi, Y., Is rhenium diboride a superhard material?, Adv. Mater., 2008, vol. 20, no. 24, pp. 4780–4783.

    Article  CAS  Google Scholar 

  50. Chung, H.-Y., Weinberger, M.B., Yang, J.-M., Tolbert, S.H., and Kaner, R.B., Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2, Appl. Phys. Lett., 2008, vol. 92, no. 26, article 261904.

    Article  Google Scholar 

  51. Haug, F.-J., Schwaller, P., Wloka, J., Patscheider, J., Karimi, A., and Tobler, M., Stoichiometry dependence of hardness, elastic properties, and oxidation resistance in TiN/SiNx nanocomposites deposited by a hybrid process, J. Vac. Sci. Technol., A, 2004, vol. 22, no. 4, pp. 1229–1234.

    Article  CAS  Google Scholar 

  52. Vepřek, S., Haussmann, M., and Reiprich, S., Superhard nanocrystalline W2N/amorphous Si3N4 composite materials, J. Vac. Sci. Technol., A, 1996, vol. 14, no. 1, pp. 46–51.

    Article  Google Scholar 

  53. Dubrovinskaia, N., Dubrovinsky, L., Langenhorst, F., Jacobsen, S., and Liebske, C., Nanocrystalline diamond synthesized from C60, Diamond Relat. Mater., 2005, vol. 14, no. 1, pp. 16–22.

    Article  CAS  Google Scholar 

  54. Dubrovinskaia, N., Solozhenko, V.L., Miyajima, N., Dmitriev, V., Kurakevych, O.O., and Dubrovinsky, L., Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness, Appl. Phys. Lett., 2007, vol. 90, no. 10, pp. 18–20.

    Article  Google Scholar 

  55. Lu, L., Chen, X., Huang, X., and Lu, K., Revealing the maximum strength in nanotwinned copper, Science, 2009, vol. 323, no. 5914, pp. 607–610.

    Article  CAS  PubMed  Google Scholar 

  56. Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z., et al., Nanotwinned diamond with unprecedented hardness and stability, Nature, 2014, vol. 510, no. 7504, pp. 250–253.

    Article  CAS  PubMed  Google Scholar 

  57. Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A., and Gardinier, C.F., Large anisotropic thermal conductivity in synthetic diamond films, Nature, 1992, vol. 359, no. 6394, pp. 401–403.

    Article  CAS  Google Scholar 

  58. Ekimov, E.A., Kudryavtsev, O.S., Khomich, A.A., Lebedev, O.I., Dolenko, T.A., and Vlasov, I.I., High-pressure synthesis of boron-doped ultrasmall diamonds from an organic compound, Adv. Mater., 2015, vol. 27, no. 37, pp. 5518–5522.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, N., Yu, S., MacPherson, J.V., Einaga, Y., Zhao, H., Zhao, G., Swain, G.M., and Jiang, X., Conductive diamond: Synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 2019, vol. 48, no. 1, pp. 157–204.

    Article  CAS  PubMed  Google Scholar 

  60. Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y., The properties and applications of nanodiamonds, Nat. Nanotechnol., 2012, vol. 7, no. 1, pp. 11–23.

    Article  CAS  Google Scholar 

  61. Sidorov, V.A. and Ekimov, E.A., Superconductivity in diamond, Diamond Relat. Mater., 2010, vol. 19, nos. 5–6, pp. 351–357.

    Article  CAS  Google Scholar 

  62. Baranov, P.G., Soltamova, A.A., Tolmachev, D.O., Romanov, N.G., Babunts, R.A., Shakhov, F.M., Kidalov, S.V., Vul’, A.Y., Mamin, G.V., Orlinskii, S.B., et al., Enormously high concentrations of fluorescent nitrogen-vacancy centers fabricated by sintering of detonation nanodiamonds, Small, 2011, vol. 7, no. 11, pp. 1533–1537.

    Article  CAS  PubMed  Google Scholar 

  63. Heyer, S., Janssen, W., Turner, S., Lu, Y.G., Yeap, W.S., Verbeeck, J., Haenen, K., and Krueger, A., Toward deep blue nano hope diamonds: Heavily boron-doped diamond nanoparticles, ACS Nano, 2014, vol. 8, no. 6, pp. 5757–5764.

    Article  CAS  PubMed  Google Scholar 

  64. Koidl, P. and Klages, C.-P., Optical applications of polycrystalline diamond, Diamond Relat. Mater., 1992, vol. 1, no. 10, pp. 1065–1074.

    Article  CAS  Google Scholar 

  65. Davanloo, F., Lee, T.J., Park, H., You, J.H., and Collins, C.B., Protective films of nanophase diamond deposited directly on zinc sulfide infrared optics, J. Mater. Res., 1993, vol. 8, no. 12, pp. 3090–3099.

    Article  CAS  Google Scholar 

  66. Zaitsev, A.M., Optical Properties of Diamond: A Data Handbook, Berlin: Springer, 2001.

    Book  Google Scholar 

  67. Zhang, X. and Meng, J., Recent progress of boron nitrides, in Ultra-Wide Bandgap Semiconductor Materials, Liao, M., Shen, B., and Wang, Z., Eds., Amsterdam: Elsevier, 2019, pp. 347–419.

    Google Scholar 

  68. Vel, L., Demazeau, G., and Etourneau, J., Cubic boron nitride: Synthesis, physicochemical properties, and applications, Mater. Sci. Eng., B, 1991, vol. 10, no. 2, pp. 149–164.

    Article  Google Scholar 

  69. Irifune, T., Ueda, C., Ohshita, S., Ohfuji, H., Kunimoto, T., and Shinmei, T., Synthesis of nano-polycrystalline diamond from glassy carbon at pressures up to 25 GPa, High Pressure Res., 2020, vol. 40, no. 1, pp. 96–106.

    Article  CAS  Google Scholar 

  70. Sawaoka, A.B., Takamatsu, M., and Akashi, T., Shock compression synthesis of diamond, Adv. Mater., 1994, vol. 6, no. 5, pp. 346–354.

    Article  CAS  Google Scholar 

  71. Setaka, N. and Sekikawa, Y., Diamond synthesis from carbon precursor by explosive shock compression, J. Mater. Sci., 1981, vol. 16, no. 6, pp. 1728–1730.

    Article  CAS  Google Scholar 

  72. Hirai, H., Kondo, K., Kim, M., Koinuma, H., Kurashima, K., and Bando, Y., Transparent nanocrystalline diamond ceramics fabricated from C60 fullerene by shock compression, Appl. Phys. Lett., 1997, vol. 71, pp. 3016–3018.

    Article  CAS  Google Scholar 

  73. Kraus, D., Ravasio, A., Gauthier, M., Gericke, D.O., Vorberger, J., Frydrych, S., Helfrich, J., Fletcher, L.B., Schaumann, G., Nagler, B., et al., Nanosecond formation of diamond and lonsdaleite by shock compression of graphite, Nat. Commun., 2016, vol. 7, pp. 1–6.

    Article  Google Scholar 

  74. Yan, C., Mao, H., Li, W., Qian, J., Zhao, Y., and Hemley, R.J., Ultrahard diamond single crystals from chemical vapor deposition, Phys. Status Solidi A, 2004, vol. 201, no. 4, pp. R25–R27.

  75. Roy, R., Ravichandran, D., Ravindranathan, P., and Badzian, A., Evidence for hydrothermal growth of diamond in the C–H–O and C–H–O halogen system, J. Mater. Res., 1996, vol. 11, no. 5, pp. 1164–1168.

    Article  CAS  Google Scholar 

  76. Gogotsi, Y.G., Kofstad, P., Yoshimura, M., and Nickel, K.G., Formation of sp3-bonded carbon upon hydrothermal treatment of SiC, Diamond Relat. Mater., 1996, vol. 5, no. 2, pp. 151–162.

    Article  CAS  Google Scholar 

  77. Korablov, S., Yokosawa, K., Korablov, D., Tohji, K., and Yamasaki, N., Hydrothermal formation of diamond from chlorinated organic compounds, Mater. Lett., 2006, vol. 60, nos. 25–26, pp. 3041–3044.

    Article  CAS  Google Scholar 

  78. Gogotsi, Y.G., Nickel, K.G., and Kofstad, P., Hydrothermal synthesis of diamond from diamond-seeded β‑SiC powder, J. Mater. Chem., 1995, vol. 5, no. 12, pp. 2313–2314.

    Article  CAS  Google Scholar 

  79. Li, Y., Qian, Y., Liao, H., Ding, Y., Yang, L., Xu, C., Li, F., and Zhou, G., A reduction-pyrolysis-catalysis synthesis of diamond, Science, 1998, vol. 281, no. 5374, pp. 246–247.

    Article  CAS  PubMed  Google Scholar 

  80. Demazeau, G., Growth of cubic boron nitride by chemical vapor deposition and high-pressure high-temperature synthesis, Diamond Relat. Mater., 1993, vol. 2, nos. 2–4, pp. 197–200.

    Article  CAS  Google Scholar 

  81. Bindal, M.M., Singhal, S.K., Singh, B.P., Nayar, R.K., Chopra, R., and Dhar, A., Synthesis of cubic boron nitride using magnesium as the catalyst, J. Cryst. Growth, 1991, vol. 112, no. 2, pp. 386–401.

    Article  CAS  Google Scholar 

  82. Du, Y., Ji, X., Yang, X., Gong, X., Yang, D., Su, Z., and Zhang, T., The influence of hBN crystallinity and additive lithium hydride on cBN synthesis in Li3N–hBN system, Diamond Relat. Mater., 2007, vol. 16, no. 8, pp. 1475–1478.

    Article  CAS  Google Scholar 

  83. Lorenz, H., Peun, T., and Orgzall, I., Kinetic and thermodynamic investigation of cBN formation in the system BN-Mg3N2, Appl. Phys. A, 1997, vol. 65, no. 4, pp. 487–495.

    Article  CAS  Google Scholar 

  84. Bocquillon, G., Loriers-Susse, C., and Loriers, J., Synthesis of cubic boron nitride using Mg and pure or M'-doped Li3N, Ca3N2 and Mg3N2 with M' = Al, B, Si, Ti, J. Mater. Sci., 1993, vol. 28, no. 13, pp. 3547–3556.

    Article  CAS  Google Scholar 

  85. Endo, T., Fukunga, O., and Iwata, M., The synthesis of cBN using Ca3B2N4, J. Mater. Sci., 1981, vol. 16, no. 8, pp. 2227–2232.

    Article  CAS  Google Scholar 

  86. Choi, J., Kang, S.L., Fukunaga, O., Park, J., and Eun, K.Y., Effect of B2O3 and hBN crystallinity on cBN synthesis, J. Am. Ceram. Soc., 1993, vol. 76, no. 10, pp. 2525–2528.

    Article  CAS  Google Scholar 

  87. Bundy, F. and Wentorf, R., Direct transformation of hexagonal boron nitride to denser forms, J. Chem. Phys., 1963, vol. 38, pp. 1144–1149.

    Article  CAS  Google Scholar 

  88. Sekine, T., Shock-induced phase transformation of graphite-like boron nitride to denser forms, Mater. Sci. Lett., 1989, vol. 8, no. 8, pp. 872–874.

    Article  CAS  Google Scholar 

  89. Ikeda, T., Cubic boron nitride films synthesized by low-energy ion-beam-enhanced vapor deposition, Appl. Phys. Lett., 1992, vol. 61, no. 7, pp. 786–788.

    Article  CAS  Google Scholar 

  90. Chong, Y.M., Ma, K.L., Leung, K.M., Chan, C.Y., Ye, Q., Bello, I., Zhang, W., and Lee, S.T., Synthesis and mechanical properties of cubic boron nitride/nanodiamond composite films, Chem. Vap. Deposition, 2006, vol. 12, no. 1, pp. 33–38.

    Article  CAS  Google Scholar 

  91. Choudhary, D. and Bellare, J., Manufacture of gem quality diamonds: A review, Ceram. Int., 2000, vol. 26, no. 1, pp. 73–85.

    Article  CAS  Google Scholar 

  92. Zhang, X. and Meng, J., Recent progress of boron nitrides, in Ultra-Wide Bandgap Semiconductor Materials, Liao, M., Shen, B., and Wang, Z., Eds., Amsterdam: Elsevier, 2019, pp. 347–419.

    Google Scholar 

  93. Mirkarimi, P.B., McCarty, K.F., and Medlin, D.L., Review of advances in cubic boron nitride film synthesis, Mater. Sci. Eng., R, 1997, vol. 21, no. 2, pp. 47–100.

    Article  Google Scholar 

  94. Monteiro, S.N., Skury, A.L.D., De Azevedo, M.G., and Bobrovnitchii, G.S., Cubic boron nitride competing with diamond as a superhard engineering material—An overview, J. Mater. Res. Technol., 2013, vol. 2, no. 1, pp. 68–74.

    Article  CAS  Google Scholar 

  95. Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials, Kanyanta, V., Ed., Cham: Springer, 2016.

    Google Scholar 

  96. Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C., Synthesis of superhard cubic BC2N, Appl. Phys. Lett., 2001, vol. 78, no. 10, pp. 1385–1387.

    Article  CAS  Google Scholar 

  97. Mao, W.L., Mao, H.K., Eng, P.J., Trainor, T.P., Newville, M., Kao, C.C., Heinz, D.L., Shu, J., Meng, Y., and Hemley, R.J., Bonding changes in compressed superhard graphite, Science, 2003, vol. 302, no. 5644, pp. 425–427.

    Article  CAS  PubMed  Google Scholar 

  98. Yamanaka, S., Kini, N.S., Kubo, A., Jida, S., and Kuramoto, H., Topochemical 3D polymerization of C60 under high pressure at elevated temperatures, J. Am. Chem. Soc., 2008, vol. 130, no. 13, pp. 4303–4309.

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Z., Zhao, Y., Tait, K., Liao, X., Schiferl, D., Zha, C., Downs, R.T., Qian, J., Zhu, Y., and Shen, T., A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 38, pp. 13699–13702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zarechnaya, E.Y., Dubrovinsky, L., Dubrovinskaia, N., Filinchuk, Y., Chernyshov, D., Dmitriev, V., Miyajima, N., El Goresy, A., Braun, H.F., van Smaalen, S., et al., Superhard semiconducting optically transparent high pressure phase of boron, Phys. Rev. Lett., 2009, vol. 102, no. 18, pp. 8–11.

    Article  Google Scholar 

  101. Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M., Ultimate metastable solubility of boron in diamond: Synthesis of superhard diamond-like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 1, pp. 1–4.

    Google Scholar 

  102. Zinin, P.V., Ming, L.C., Ishii, H.A., Jia, R., Acosta, T., and Hellebrand, E., Phase transition in BCx system under high-pressure and high-temperature: Synthesis of cubic dense BC3 nanostructured phase, J. Appl. Phys., 2012, vol. 111, no. 11.

  103. Hall, E.O., The deformation and ageing of mild steel: II. Characteristics of the luders deformation, Proc. Phys. Soc., London, Sect. B, 1951, vol. 64, no. 9, pp. 742–747.

    Google Scholar 

  104. Petch, N., The cleavage strength of polycrystals, J. Iron Steel Inst. Lond., 1953, vol. 173, p. 25.

    Google Scholar 

  105. Schiotz, J., A maximum in the strength of nanocrystalline copper, Science, 2003, vol. 301, no. 5638, pp. 1357–1359.

    Article  CAS  PubMed  Google Scholar 

  106. Bringa, E.M., Ultrahigh strength in nanocrystalline materials under shock loading, Science, 2005, vol. 309, no. 5742, pp. 1838–1841.

    Article  CAS  PubMed  Google Scholar 

  107. Wang, Y.M., Bringa, E.M., Victoria, M., Caro, A., McNaney, J.M., Smith, R., and Remington, B.A., Deformation of nanocrystalline materials at ultrahigh strain rates microstructure perspective in nanocrystalline nickel, J. Phys. IV, 2006, vol. 134, pp. 915–920.

    CAS  Google Scholar 

  108. Lu, K., Lu, L., and Suresh, S., Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science, 2009, vol. 324, no. 5925, pp. 349–352.

    Article  CAS  PubMed  Google Scholar 

  109. Li, X., Wei, Y., Lu, L., Lu, K., and Gao, H., Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature, 2010, vol. 464, no. 7290, pp. 877–880.

    Article  CAS  PubMed  Google Scholar 

  110. Irifune, T., Kurio, A., Sakamoto, S., Inoue, T., and Sumiya, H., Ultrahard polycrystalline diamond from graphite, Nature, 2003, vol. 421, no. 6923, pp. 599–600.

    Article  CAS  PubMed  Google Scholar 

  111. Solozhenko, V.L., Kurakevych, O.O., and Le Godec, Y., Creation of nanostuctures by extreme conditions: High-pressure synthesis of ultrahard nanocrystalline cubic boron nitride, Adv. Mater., 2012, vol. 24, no. 12, pp. 1540–1544.

    Article  CAS  PubMed  Google Scholar 

  112. Xu, B. and Tian, Y.J., High pressure synthesis of nanotwinned ultrahard materials, Acta Phys. Sin., 2017, vol. 66, no. 3.

  113. Le Guillou, C., Brunet, F., Irifune, T., Ohfuji, H., and Rouzaud, J.-N., Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations, Carbon, 2007, vol. 45, no. 3, pp. 636–648.

    CAS  Google Scholar 

  114. Xu, C., He, D., Wang, H., Guan, J., Liu, C., Peng, F., Wang, W., Kou, Z., He, K., Yan, X., et al., Nano-polycrystalline diamond formation under ultra-high pressure, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 232–237.

    Article  CAS  Google Scholar 

  115. Sumiya, H. and Irifune, T., Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature, J. Mater. Res., 2007, vol. 22, no. 8, pp. 2345–2351.

    Article  CAS  Google Scholar 

  116. Yusa, H., Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure, Diamond Relat. Mater., 2002, vol. 11, no. 1, pp. 87–91.

    Article  CAS  Google Scholar 

  117. Sumiya, H. and Irifune, T., Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion, Diamond Relat. Mater., 2004, vol. 13, no. 10, pp. 1771–1776.

    Article  CAS  Google Scholar 

  118. Sumiya, H., Harano, K., and Irifune, T., Ultrahard diamond indenter prepared from nanopolycrystalline diamond, Rev. Sci. Instrum., 2008, vol. 79, article 56 102.

    Article  Google Scholar 

  119. Tanigaki, K., Ogi, H., Sumiya, H., Kusakabe, K., Nakamura, N., Hirao, M., and Ledbetter, H., Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond, Nat. Commun., 2013, vol. 4, pp. 1–7.

    Article  Google Scholar 

  120. Dubrovinskaia, N., Dub, S., and Dubrovinsky, L., Superior wear resistance of aggregated diamond nanorods, Nano Lett., 2006, vol. 6, no. 4, pp. 824–826.

    Article  CAS  PubMed  Google Scholar 

  121. Sumiya, H. and Harano, K., Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT, Diamond Relat. Mater., 2012, vol. 24, pp. 5–44.

    Article  Google Scholar 

  122. Li, Y., Kou, Z., Wang, H., Wang, K., Tang, H., Wang, Y., Liu, S., Ren, X., Meng, C., and Wang, Z., High pressure sintering behavior and mechanical properties of cBN–Ti3Al and cBN–Ti3Al–Al composite materials, High Pressure Res., 2012, vol. 32, no. 4, pp. 524–531.

    Article  CAS  Google Scholar 

  123. Sumiya, H., Uesaka, S., and Satoh, S., Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method, J. Mater. Sci., 2000, vol. 35, no. 5, pp. 1181–1186.

    Article  CAS  Google Scholar 

  124. Sumiya, H., Harano, K., and Ishida, Y., Mechanical properties of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT, Diamond Relat. Mater., 2014, vol. 41, pp. 14–19.

    Article  CAS  Google Scholar 

  125. Dub, S. and Petrusha, I., Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique, High Pressure Res., 2006, vol. 26, no. 2, pp. 71–77.

    Article  CAS  Google Scholar 

  126. Liu, Y., He, D., Wang, P., Yan, X., Xu, C., Liu, F., Liu, J., and Hu, Q., Microstructural and mechanical properties of cBN–Si composites prepared from the high pressure infiltration method, Int. J. Refract. Met. Hard Mater., 2016, vol. 61, pp. 1–5.

    Article  Google Scholar 

  127. Dub, S., Petrusha, I., Bushlya, M., Taniguchi, T., Belous, V., Tolmachova, G., and Andreev, A., Theoretical shear strength and the onset of plasticity in nanodeformation of cubic boron nitride, J. Superhard Mater., 2017, vol. 39, no. 2, pp. 88–98.

    Article  Google Scholar 

  128. Dub, S., Lytvyn, P., Strelchuk, V., Nikolenko, A., Stubrov, Y., Petrusha, I., Taniguchi, T., and Ivakhnenko, S., Vickers hardness of diamond and cBN single crystals: AFM approach, Crystals, 2017, vol. 7, no. 12, pp. 1–13.

    Article  Google Scholar 

  129. Solozhenko, V.L., Bushlya, V., and Zhou, J., Mechanical properties of ultra-hard nanocrystalline cubic boron nitride, J. Appl. Phys., 2019, vol. 126, no. 7, p. 75107.

    Article  Google Scholar 

  130. Sumiya, H., Ishida, Y., Arimoto, K., and Harano, K., Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT, Diamond Relat. Mater., 2014, vol. 48, pp. 47–51.

    Article  CAS  Google Scholar 

  131. Vepřek, S., Nanostructured superhard materials, in Handbook of Ceramic Hard Materials, Chichester: Wiley, 2000, pp. 104–139.

    Google Scholar 

  132. Zhang, Y., Sun, H., and Chen, C., Superhard cubic BC2N compared to diamond, Phys. Rev. Lett., 2004, vol. 93, no. 19, pp. 1–4.

    Article  Google Scholar 

  133. Komatsu, T., Samedima, M., Awano, T., Kakadate, Y., and Fujiwara, S., Creation of superhard B–C–N heterodiamond using an advanced shock wave compression technology, J. Mater. Process. Technol., 1999, vol. 85, nos. 1–3, pp. 69–73.

    Article  Google Scholar 

  134. Kurdyumov, A.V. and Solozhenko, V.L., Shock-wave synthesis of ternary diamond-like phases in the B–C–N system, Powder Metall. Met. Ceram., 2000, vol. 39, no. 9, pp. 467–473.

    Article  CAS  Google Scholar 

  135. Solozhenko, V.L., Synthesis of novel superhard phases in the B–C–N system, High Pressure Res., 2002, vol. 22, nos. 3–4, pp. 519–524.

    Article  Google Scholar 

  136. Badzian, A.R., Cubic boron nitride—diamond mixed crystals, Mater. Res. Bull., 1981, vol. 16, no. 11, pp. 1385–1393.

    Article  CAS  Google Scholar 

  137. Liu, X., Jia, X., Zhang, Z., Zhao, M., Guo, W., Huang, G., and Ma, H., Synthesis and characterization of new “BCN” diamond under high pressure and high temperature conditions, Cryst. Growth Des., 2011, vol. 11, no. 4, pp. 1006–1014.

    Article  CAS  Google Scholar 

  138. Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Segregative crystallization of several diamond-like phases from the graphitic BC2N without an additive at 7.7 GPa, Chem. Mater., 1994, vol. 6, no. 12, pp. 2246–2251.

    Article  CAS  Google Scholar 

  139. Huang, J., Zhu, Y.T., and Mori, H., Structure and phase characteristics of amorphous boron–carbon–nitrogen under high pressure and high temperature, J. Mater. Res., 2001, vol. 16, no. 4, pp. 1178–1184.

    Article  CAS  Google Scholar 

  140. Dubrovinskaia, N., Solozhenko, V.L., Miyajima, N., Dmitriev, V., Kurakevych, O.O., and Dubrovinsky, L., Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness, Appl. Phys. Lett., 2007, vol. 90, no. 10, article 101912.

    Article  Google Scholar 

  141. Schiøtz, J., Di Tolla, F.D., and Jacobsen, K.W., Softening of nanocrystalline metals at very small grain sizes, Nature, 1998, vol. 391, no. 6667, pp. 561–563.

    Article  Google Scholar 

  142. Pande, C.S. and Cooper, K.P., Nanomechanics of Hall–Petch relationship in nanocrystalline materials, Prog. Mater. Sci., 2009, vol. 54, no. 6, pp. 689–706.

    Article  CAS  Google Scholar 

  143. Yue, Y., Gao, Y., Hu, W., Xu, B., Wang, J., Zhang, X., Zhang, Q., Wang, Y., Ge, B., Yang, Z., et al., Hierarchically structured diamond composite with exceptional toughness, Nature, 2020, vol. 582, no. 7812, pp. 370–374.

    Article  CAS  PubMed  Google Scholar 

  144. Zhu, S., Yan, X., Liu, J., Oganov, A.R., and Zhu, Q., A revisited mechanism of the graphite-to-diamond transition at high temperature, Matter, 2020, vol. 3, no. 3, pp. 864–878.

    Article  Google Scholar 

  145. Nemeth, P., Garvie, L.A.J., Aoki, T., Dubrovinskaia, N., Dubrovinsky, L., and Buseck, P.R., Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material, Nat. Commun., 2014, vol. 5, no. 1, p. 5447.

    Article  CAS  PubMed  Google Scholar 

  146. Liu, J., Zhan, G., Wang, Q., Yan, X., Liu, F., Wang, P., Lei, L., Peng, F., Kou, Z., and He, D., Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure, Appl. Phys. Lett., 2018, vol. 112, no. 6, article 061901.

    Article  Google Scholar 

  147. An, Q. and Goddard, W.A., III, Atomistic origin of brittle failure of boron carbide from large-scale reactive dynamics simulations: Suggestions toward improved ductility, Phys. Rev. Lett., 2015, vol. 115, no. 10, pp. 1–5.

    Article  Google Scholar 

  148. An, Q., Reddy, K.M., Qian, J., Hemker, K.J., Chen, M.-W., and Goddard, W.A. III, Nucleation of amorphous shear bands at nanotwins in boron suboxide, Nat. Commun., 2016, vol. 7, no. 1, article 11001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Koehler, J.S., Attempt to design a strong solid, Phys. Rev. B, 1970, vol. 2, no. 2, pp. 547–551.

    Article  Google Scholar 

  150. Lehoczky, S.L., Retardation of dislocation generation and motion in thin-layered metal laminates, Phys. Rev. Lett., 1978, vol. 41, no. 26, pp. 1814–1818.

    Article  CAS  Google Scholar 

  151. Shinn, M., Hultman, L., and Barnett, S.A., Growth, structure, and microhardness of epitaxial TiN/NbN superlattices, J. Mater. Res., 1992, vol. 7, no. 4, pp. 901–911.

    Article  CAS  Google Scholar 

  152. Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J.-E., Markert, L.C., and Greene, J.E., Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. Appl. Phys., 1987, vol. 62, no. 2, pp. 481–484.

    Article  CAS  Google Scholar 

  153. Veprek, S., Veprek-Heijman, M.G.J., Karvankova, P., and Prochazka, J., Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 2005, vol. 476, no. 1, pp. 1–29.

    Article  CAS  Google Scholar 

  154. Pugh, S.F., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond., Edinburgh, Dublin Philos. Mag. J. Sci., 1954, vol. 45, no. 367, pp. 823–843.

    Article  CAS  Google Scholar 

  155. Sumiya, H., Yusa, H., Inoue, T., Ofuji, H., and Irifune, T., Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature, High Pressure Res., 2006, vol. 26, no. 2, pp. 63–69.

    Article  CAS  Google Scholar 

  156. Guo, D., Song, S., Luo, R., Goddard, W.A., Chen, M., Reddy, K.M., and An, Q., Grain boundary silding and amorphization is responsible for the reverse Hall–Petch relation in superhard nanocrystalline boron carbid, Phys. Rev. Lett., 2018, vol. 121, no. 14, article 145504.

    Article  CAS  PubMed  Google Scholar 

  157. Liu, X., Chen, X., Ma, H.-A., Jia, X., Wu, J., Yu, T., Wang, Y., Guo, J., Petitgirard, S., Bina, C.R., et al., Ultrahard stitching of nanotwinned diamond and cubic boron nitride in C2BN composite, Sci. Rep., 2016, vol. 6, no. 1, article 30518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Reddy, K.M., Liu, P., Hirata, A., Fujita, T., and Chen, M.W., Atomic structure of amorphous shear bands in boron carbide, Nat. Commun., 2013, vol. 4, pp. 1–5.

    Article  Google Scholar 

  159. Li, B., Sun, H., and Chen, C., Large indentation strain-stiffening in nanotwinned cubic boron nitride, Nat. Commun., 2014, vol. 5, no. 1, pp. 1–7.

    Google Scholar 

  160. Madhav Reddy, K., Guo, J.J., Shinoda, Y., Fujita, T., Hirata, A., Singh, J.P., McCauley, J.W., and Chen, M.W., Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases, Nat. Commun., 2012, vol. 3, pp. 1052–1057.

    Article  CAS  PubMed  Google Scholar 

  161. Akopov, G., Yeung, M.T., Turner, C.L., Mohammadi, R., and Kaner, R.B., Extrinsic hardening of superhard tungsten tetraboride alloys with group 4 transition metals, J. Am. Chem. Soc., 2016, vol. 138, no. 17, pp. 5714–5721.

    Article  CAS  PubMed  Google Scholar 

  162. Tse, J.S., Klug, D.D., and Gao, F., Hardness of nanocrystalline diamonds, Phys. Rev. B, 2006, vol. 73, no. 14, article 140102.

    Article  Google Scholar 

  163. Xiao, J., Yang, H., Wu, X., Younus, F., Li, P., Wen, B., Zhang, X., Wang, Y., and Tian, Y., Dislocation behaviors in nanotwinned diamond, Sci. Adv., 2018, vol. 4, no. 9, pp. 1–9.

    Article  Google Scholar 

  164. Wen, B., Xu, B., Wang, Y., Gao, G., Zhou, X.F., Zhao, Z., and Tian, Y., Continuous strengthening in nanotwinned diamond, npj Comput. Mater., 2019, vol. 5, no. 1, pp. 1–6.

    Google Scholar 

  165. Xiao, J., Wen, B., Xu, B., Zhang, X., Wang, Y., and Tian, Y., Intersectional nanotwinned diamond—The hardest polycrystalline diamond by design, npj Comput. Mater., 2020, vol. 6, no. 1, pp. 1–7.

    Google Scholar 

  166. Lammer, A., Mechanical properties of polycrystalline diamonds, Mater. Sci. Technol., 1988, vol. 4, no. 11, pp. 949–955.

    Article  CAS  Google Scholar 

  167. Upadhyaya, G.S., Materials science of cemented carbides—An overview, Mater. Des., 2001, vol. 22, no. 6, pp. 483–489.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Research Platforms and Research Projects of Universities in Guangdong Province (grant no. 2018KZDXM062), the Shenzhen Science and Technology Innovation Committee (grant no. JCYJ20190809173213150), the Guangdong Innovative and Entrepreneurial Research Team Program (no. 2016ZT06C279), the Shenzhen Peacock Plan (no. KQTD2016053019134356), and the Research Platform for Crystal Growth and Thin-Film Preparation at SUSTech. The work was also partially supported by the Shenzhen Development and Reform Commission Foundation for Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressure, the grant from the National Natural Science Foundation of China (no. 11027405), and the China Postdoctoral Science Foundation (no. 2019M662694).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaozhi Yan or Shanmin Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiangting Ren, Yan, X., Wang, L. et al. Strengthening Superhard Materials by Nanostructure Engineering. J. Superhard Mater. 43, 307–329 (2021). https://doi.org/10.3103/S1063457621050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621050063

Navigation