Skip to main content
Log in

Co–Fe Co-Doped Activated Carbon from Waste Cigarette Filters for Color and COD Removal from Textile Wastewater

  • NATURAL WATERS
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

In this study, Co and Fe doped carbon material was synthesized from cigarette filters, which are significant waste in the world, and the use of this material as a catalyst in persulfate oxidation applied for color and COD removal in biologically treated textile wastewater was investigated. Co–Fe co-doped cigarette filter based carbon (CoFe-CFC) was characterized by SEM and FTIR analysis and contained 1.83 ± 0.19% Fe and 0.76 ± 0.07% Co. The color removal at different CoFe-CFC dose, \({{{\text{S}}}_{2}}{\text{O}}_{8}^{{2 - }}\) concentration and oxidation time were analyzed by ANOVA and the effect of these parameters was determined. In the treatment of biologically treated textile wastewater with CoFe-CFC and \({{{\text{S}}}_{2}}{\text{O}}_{8}^{{2 - }}\), color removal increases with the increase of all parameters. 84.6% of COD and 93.9% of color removal can be achieved with oxidation of 0.4 g/L \({{{\text{S}}}_{2}}{\text{O}}_{8}^{{2 - }}\) and 3 g/L CoFe-CFC for 120 min. Furthermore, CoFe-CFC has high adsorption capacity, and 83.1% of color and 70.3% of COD removal is achieved in biologically treated textile wastewater at a dose of 3 g/L CoFe-CFC after 120 min adsorption. As a result, it has been observed that while waste recovery and reduction are achieved with carbon material from waste cigarette filters, it can also provide color and COD removal from biological textile wastewater by using it as a catalyst in persulfate oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhang, X., Yu, M., Li, Y., Cheng, F., Liu, Y., Gao, M., Liu, G., Hu, L., and Liang, Y., Effectiveness of discarded cigarette butts derived carbonaceous adsorbent for heavy metals removal from water, Microchem. J., 2021, vol. 168, p. 106474. https://doi.org/10.1016/j.microc.2021.106474

    Article  CAS  Google Scholar 

  2. Xue, Z., Wen, J., Yang, C., Yuan, L., Yin, X., and Li, Y., Efficient removal of chloramphenicol by K2CO3 activated porous carbon derived from cigarette butts, Biomass Convers. Biorefin., 2022. https://doi.org/10.1007/s13399-022-02515-z

  3. Soltani, S.M., Yazdi, S.K., and Hosseini, S., Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters, Appl. Nanosci., 2014, vol. 4, pp. 551–569. https://doi.org/10.1007/s13204-013-0230-0

    Article  CAS  Google Scholar 

  4. Zhang, X., Xu, J., Lv, Z., Wang, Q., Ge, H., Wang, X., and Hong, B., Preparation and utilization of cigarette filters based activated carbon for removal CIP and SDS from aqueous solutions, Chem. Phys. Lett., 2020, vol. 747, p 137343. https://doi.org/10.1016/j.cplett.2020.137343

    Article  CAS  Google Scholar 

  5. Zhang, Q., Cheng, Y., Fang, C., Chen, J., Chen, H., Li, H., and Yao, Y., Facile synthesis of porous carbon/Fe3O4 composites derived from waste cellulose acetate by one-step carbothermal method as a recyclable adsorbent for dyes, J. Mater. Res. Technol., 2020, vol. 9, no. 3, pp. 3384–3393. https://doi.org/10.1016/j.jmrt.2020.01.074

    Article  CAS  Google Scholar 

  6. Tehrim, A., Dai, M., Wu, X., Umair, M.M., Ali, I., Amjed, M.A., Rong, R., Javaid, S.F., and Peng, C., Citric acid modified waste cigarette filters for adsorptive removal of Methylene Blue dye from aqueous solution, J. Appl. Polym. Sci., 2021, vol. 138, p. e50655. https://doi.org/10.4002/app.50655

    Article  Google Scholar 

  7. Manfrin, J., Gonçalves, A.C., Schwantes, D., Conradi, E., Zimmermann, J., and Ziemer, G.L., Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+ adsorption, J. Environ. Chem. Eng., 2021, vol. 9, p. 104980. https://doi.org/10.1016/j.jece.2020.104980

    Article  CAS  Google Scholar 

  8. Macchi, S., Alsebai, Z., Watanabe, F., Ilyas, A., Atif, S., Viswanathan, T., and Siraj, N., Influence of phosphorus and nitrogen codoping of activated carbon from littered cigarette filters for adsorption of Methylene Blue dye from wastewater, Sustainable Environ. Res., 2021, vol. 31, p. 36. https://doi.org/10.1186/s42834-021-00108-5

  9. Huang, S., Hu, T., Shi, P., Zhao, G., Min, Y., and Xu, Q., Peroxymonosulfate activation by recycling of discarded cigarette filters: Selective degradation of contaminants, J. Taiwan Inst. Chem. Eng., 2022, vol. 132, p. 104139. https://doi.org/10.1016/j.jtice.2021.11.006

    Article  CAS  Google Scholar 

  10. Huang, W., Xiao, S., Zhong, H., Yan, M., and Yang, X., Activation of persulfates by carbonaceous materials: A review, Chem. Eng. J., 2021, vol. 418, p. 129297. https://doi.org/10.1016/j.cej.2021.129297

    Article  CAS  Google Scholar 

  11. Erdem, H. and Erdem, M., Synthesis and characterization of a novel activated carbon-supported cobalt catalyst from biomass mixture for tetracycline degradation via persulfate activation, Biomass Convers. Biorefin., 2022, vol. 12, pp. 3513–3524. https://doi.org/10.1007/s13399-020-00963-z

    Article  CAS  Google Scholar 

  12. Ma, Q., Nengzi, L.-C., Zhang, X., Zhao, Z., and Cheng, X., Enhanced activation of persulfate by AC@CoFe2O4 nanocomposites for effective removal of lomefloxacin, Sep. Purif. Technol., 2020, vol. 233, p. 115978. https://doi.org/10.1016/j.seppur.2019.115978

    Article  CAS  Google Scholar 

  13. APHA, Standard Methods for The Examination of Water and Wastewater, American Public Health Association, 2005, 21st ed.

    Google Scholar 

  14. Habibi, M.H. and Parhizkar, H.J., FTIR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3, Spectrochim. Acta, Part A, 2014, vol. 127, pp. 102–106. https://doi.org/10.1016/j.saa.2014.02.090

    Article  CAS  Google Scholar 

  15. Farbod, M., Sharif, L., and Ahangarpour, A., Dye desorption and photocatalytic degradation of Methylene Blue by AgC nanostructure, Fullerenes, Nanotubes, Carbon Nanostruct., 2021, vol. 30, no. 4, pp. 452–456. https://doi.org/10.1080/1536383X.2021.1954912

    Article  Google Scholar 

  16. Nistor, M.-A., Muntean, S.G., Ianos, R., Racoviceanu, R., Ianas, C., and Cseh, L., Adsorption of anionic dyes from wastewater onto magnetic nanocomposite powders synthesized by combustion method, Appl. Sci., 2021, vol. 11, p. 9236. https://doi.org/10.3390/app11199236

    Article  CAS  Google Scholar 

  17. Pu, D., Kou, Y., Zhang, L., Liu, B., Zhu, W., Zhu, L., and Duan, T., Waste cigarette filters: Activated carbon as a novel sorbent for uranium removal, J. Radioanal. Nucl. Chem., 2019, vol. 320, pp. 725–731. https://doi.org/10.1007/s10967-019-06502-z

    Article  CAS  Google Scholar 

  18. Wu, Y.-F., Hsiao, Y.-C., Ou, Y.-J., Kubendhiran, S., Huang, C.-Y., Yougbare, S., and Lin, L.-Y., Synthesis of cigarette filter-derived activated carbon using various activating agents for flexible capacitive supercapacitors, J. Energy Storage, 2022, vol. 54, p. 105379. https://doi.org/10.1016/j.est.2022.105379

    Article  Google Scholar 

  19. Adeela, N., Maaz, K., Khan, U., Karim, S., Nisar, A., Ahmad, M., Ali, G., Han, X.F., Duan, J.L., and Liu, J., Influence of manganese substitution on structural and magnetic properties of CoFe2O4 nanoparticles, J. Alloys Compd., 2015, vol. 639, pp. 533–540. https://doi.org/10.1016/j.jallcom.2015.03.203

    Article  CAS  Google Scholar 

  20. Senthil, V.P., Gajendiran, J., Raj, S.G., Shanmugavel, T., Kumar, G.R., and Reddy, C.P., Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures, Chem. Phys. Lett., 2018, vol. 695, pp. 19–23. https://doi.org/10.1016/j.cplett.2018.01.057

    Article  CAS  Google Scholar 

  21. Wu, L., Zhang, Q., Hong, J., Dong, Z., and Wang, J., Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4–x , Chemosphere, 2019, vol. 221, pp. 412–422. https://doi.org/10.1016/j.chemosphere.2019.01.049

    Article  CAS  Google Scholar 

  22. Olfatmehr, N., Kakavandi, B., and Khezri, S.M., Peroxydisulfate activation by enhanced catalytic activity of CoFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the Cefixime degradation, Sep. Purif. Technol., 2022, vol. 302, p. 121991. https://doi.org/10.1016/j.seppur.2022.121991

    Article  CAS  Google Scholar 

  23. Wang, Y., Gao, C.-Y., Zhang, Y.-Z., Leung, M.K.H., Liu, J.-W., Huang, S.-Z., Liu, G.-L., Li, J.-F., and Zhao, H.-Z., Bimetal-organic framework derived CoFe/NC porous hybrid nanorods as high-performance persulfate activators for bisphenol a degradation, Chem. Eng. J., 2021, vol. 421, p. 127800. https://doi.org/10.1016/j.cej.2020.127800

    Article  CAS  Google Scholar 

  24. Silva, G.M., Moreira, F.C., Souza, A.U., Sounza, S.M.A.G.U., Boaventura, R.A.R., and Vilar V.J.P., Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: A study regarding the discharge into the environment and the reuse in the textile industry, J. Cleaner Prod., 2018, vol. 198, pp. 430–442. https://doi.org/10.1016/j.jclepro.2018.07.001

    Article  CAS  Google Scholar 

  25. Kiani, R., Mirzaei, F., Ghanbari, F., Feizi, R., and Mehdipour, F., Real textile wastewater treatment by a sulfate radicals-advanced oxidation process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon, J. Water Process Eng., 2020, vol. 38, p. 101623. https://doi.org/10.1016/j.jwpe.2020.101623

    Article  Google Scholar 

  26. Asgari, G., Shabanloo, A., Salari, M., and Eslami, F., Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network, Environ. Res., 2020, vol. 184, p. 109367. https://doi.org/10.1016/j.envres.2020.109367

    Article  CAS  Google Scholar 

  27. Bougdour, N., Tiskatine, R., Bakas, I., and Assabbane, A., Photocatalytic degradation of industrial textile wastewater using S2O8 2–/Fe2+ process, Mater. Today, 2020, vol. 22, pp. 69–72. https://doi.org/10.1016/j.matpr.2019.08.083

    Article  CAS  Google Scholar 

  28. Khatri, J., Nidheesh, P.V., Singh, T.S.A., and Kumar, M.S., Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater, Chem. Eng. J., 2018, vol. 348, pp. 67–73. https://doi.org/10.1016/j.cej.2018.04.074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz İzlen Çifçi.

Ethics declarations

The author declares that he has no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz İzlen Çifçi Co–Fe Co-Doped Activated Carbon from Waste Cigarette Filters for Color and COD Removal from Textile Wastewater. J. Water Chem. Technol. 45, 120–127 (2023). https://doi.org/10.3103/S1063455X23020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X23020054

Keywords:

Navigation