Skip to main content
Log in

Sensing Phase Transitions in Solids Using Thermoplasmonics

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We propose an approach to controlling the heating of plasmonic nanostructures by nanostructuring the thermostat surface. We demonstrate this using a two-dimensional array of TiN:Si voxels, which are a system of stacked titanium nitride and silicon nanocylinders. The optical heating of plasmon nanostructures can be directly controlled by the height of silicon columns at a fixed value of the pump intensity. The height of silicon nanopillar sets the operating temperature range, while the pumping intensity allows one to control the temperature in this range. We register this effect using Raman thermometry. Using plasmonic metasurface with array of TiN:Si voxels, we demonstrate the detection of the such phase transitions in nanoconfined polymers as the glass transition temperature and melting temperature at the nanoscale using Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Lia, B., Zhang, S., Andrea, J.S., and Chena, Z., Prog. Polym. Sci., 2021, vol. 120, 101431. https://doi.org/10.1016/j.progpolymsci.2021.101431

    Article  Google Scholar 

  2. Zhang, C., Guo, Y., and Priestley, R.D., Macromolecules, 2011, vol. 44, no. 10, p. 4001. https://doi.org/10.1021/ma1026862

    Article  ADS  Google Scholar 

  3. Haywood, D.G., Saha-Shah, A., Baker, L.A., Jacobson, S.C., Anal. Chem., 2015, vol. 87, p. 172. https://doi.org/10.1021/ac504180h

    Article  Google Scholar 

  4. Nugroho, A.F.A., Albinsson, D., Antosiewicz, T.J., and Langhammer, C., ACS Nano, 2020, vol. 14, p. 2345. https://doi.org/10.1021/acsnano.9b09508

    Article  Google Scholar 

  5. Baffou, G. and Quidant, R., Laser Photonics Rev., 2013, vol. 7, p. 171. https://doi.org/10.1002/lpor.201200003

    Article  ADS  Google Scholar 

  6. Chernykh, E.A., Filippov, A.N., Alekseev, A.M., Makhiboroda, M.A., and Kharintsev, S.S., J. Phys.: Conf. Ser., 2021, vol. 2015, 012029. https://doi.org/10.1088/1742-6596/2015/1/012029

    Article  Google Scholar 

  7. S. Xuac, A. Fanb, H. Wang, X. Zhang, X. Wang, T, Int. J. Heat Mass Transfer, 2020, vol. 154, 119751. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119751

    Article  Google Scholar 

  8. Liem, H., Cabanillas-Gonzalez, J., Etchegoin, P., and Bradley, D.D.C., J. Phys.: Condens. Matter, 2004, vol. 16, no. 6, p. 721. https://doi.org/10.1088/0953-8984/16/6/003

    Article  ADS  Google Scholar 

  9. Kharintsev, S.S., Chernykh, E.A., Shelaev, A.V., and Kazarian, S.G., ACS Photonics, 2021, vol. 8, no. 5, p. 1477. https://doi.org/10.1021/acsphotonics.1c00256

    Article  Google Scholar 

  10. Kharintsev, S.S., Fishman, A.I., Saikin, S.K., and Kazarian, S.G., Nanoscale, 2016, vol. 8, p. 19867. https://doi.org/10.1039/c6nr07508h

    Article  Google Scholar 

Download references

Funding

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Chernykh.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernykh, E.A., Kharintsev, S.S. Sensing Phase Transitions in Solids Using Thermoplasmonics. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S37–S40 (2022). https://doi.org/10.3103/S1062873822700356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700356

Keywords:

Navigation