Skip to main content
Log in

Resonance Capture of Electrons by Molecules near the Threshold of Ionization

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Physical processes that result in the production of positive and negative ions are found to be interrelated. Evidence of this relationship is a correlation between the energies of molecule ionization and resonance production, found for a number of polycyclic aromatic hydrocarbons via the mass spectrometry of negative ions in resonance electron capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. A similar correlation with PE spectra was discovered recently for a series of high-energy resonances in the REC spectrum of benzoic acid [31]. For the correlation to be observable, however, the PE spectra were shifted to lower energies in the Ее scale by a considerably higher value of 3.9 eV.

REFERENCES

  1. Bardsley, J.N. and Mandl, F., Rep. Prog. Phys., 1968, vol. 31, p. 471.

    Article  ADS  Google Scholar 

  2. Christophorou, L.G., in Advances in Electronics and Electron Physics, New York: Academic, 1978, vol. 46, p. 55.

    Google Scholar 

  3. Bulliard, C., Allan, M., and Haselbach, E., J. Phys. Chem., 1994, vol. 98, 11040.

    Article  Google Scholar 

  4. Tseplin, E.E., Tseplina, S.N., Tuimedov, G.M., and Khvostenko, O.G., J. Electron Spectrosc. Relat. Phenom., 2009, vol. 171, p. 37.

    Article  Google Scholar 

  5. Weiss, A.W. and Krauss, M., J. Chem. Phys., 1970, vol. 52, p. 4363.

    Article  ADS  Google Scholar 

  6. Dressler, R., Allan, M., and Tronc, M., J. Phys. B, 1987, vol. 20, p. 393.

    Article  ADS  Google Scholar 

  7. Vorob’ev, A.S., Cand. Sci. (Phys.–Math.) Dissertation, Ufa: Ural Branch, USSR Acad. Sci., 1990.

  8. Burmistrov, E.A., Furlei, I.I., Sultanov, A.S., and Tolstikov, G.A., Bull. Acad. Sci. USSR., Div. Chem. Sci., 1990, vol. 39, p. 930.

    Article  Google Scholar 

  9. Khatymov, R.V., Muftakhov, M.V., and Mazunov, V.A., Rapid Commun. Mass. Spectrom., 2003, vol. 17, p. 2327.

    Article  ADS  Google Scholar 

  10. Khatymov, R.V., Muftakhov, M.V., Schukin, P.V., and Mazunov, V.A., Russ. Chem. Bull., 2004, vol. 53, p. 738.

    Article  Google Scholar 

  11. Khvostenko, V.I., Vorob’yov, A.S., and Khvostenko, O.G., J. Phys. B, 1990, vol. 23, p. 1975.

    Article  ADS  Google Scholar 

  12. Fermi, E. and Teller, E., Phys. Rev., 1947, vol. 72, p. 399.

    Article  ADS  Google Scholar 

  13. Jordan, K.D. and Wang, F., Ann. Rev. Phys. Chem., 2003, vol. 54, p. 367.

    Article  ADS  Google Scholar 

  14. Sommerfeld, T., J. Phys.: Conf. Ser., 2005, vol. 4, p. 245.

    ADS  Google Scholar 

  15. Shchukin, P.V., Mikhailov, G.P., and Muftakhov, M.V., Int. J. Mass. Spectrom., 2015, vol. 380, p. 1.

    Article  Google Scholar 

  16. Pshenichnyuk, S.A., Fabrikant, I.I., Modelli, A., et al., Phys. Rev. A, 2019, vol. 100, 012708.

    Article  ADS  Google Scholar 

  17. Tobita, S., Meinke, M., Illenberger, E., et al., Chem. Phys., 1992, vol. 161, p. 501.

    Article  Google Scholar 

  18. Aminev, I.K., Khvostenko, V.I., Yur’ev, V.P., and Tolstikov, G.A., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1973, vol. 22, p. 1831.

    Article  Google Scholar 

  19. Khatymov, R.V., Tuktarov, R.F., and Muftakhov, M.V., JETP Lett., 2011, vol. 93, p. 437.

    Article  ADS  Google Scholar 

  20. Muftakhov, M.V., Khatymov, R.V., and Tuktarov, R.F., Tech. Phys., 2018, vol. 63, p. 1854.

    Article  Google Scholar 

  21. Khatymov, R.V., Muftakhov, M.V., and Shchukin, P.V., Rapid Commun. Mass. Spectrom., 2017, vol. 31, p. 1729.

    Article  ADS  Google Scholar 

  22. Khatymov, R.V., Tuktarov, R.F., and Muftakhov, M.V., JETP Lett., 2011, vol. 93, p. 437.

    Article  ADS  Google Scholar 

  23. Burrow, P.D., Michejda, J.A., and Jordan, K.D., J. Chem. Phys., 1987, vol. 86, p. 9.

    Article  ADS  Google Scholar 

  24. Khatymov, R.V., Shchukin, P.V., Muftakhov, M.V., et al., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 3073.

    Article  Google Scholar 

  25. Khvostenko, V.I., Mass-spektrometriya otritsatel’nykh ionov v organicheskoi khimii (Negative Ion Mass Spectrometry in Organic Chemistry), Moscow: Nauka, 1981.

  26. Khatymov, R.V. and Terentyev, A.G., Russ. Chem. Bull., 2021, vol. 70, p. 605.

    Article  Google Scholar 

  27. Schmidt, W., J. Chem. Phys., 1977, vol. 66, p. 828.

    Article  ADS  Google Scholar 

  28. Klasinc, L., Kovac, B., and Gusten, H., Pure Appl. Chem., 1983, vol. 55, p. 289.

    Article  Google Scholar 

  29. Clark, P.A., Brogli, F., and Heilbronner, E., Helv. Chim. Acta, 1972, vol. 55, p. 1415.

    Article  Google Scholar 

  30. Boschi, R., Murrell, J.N., and Schmidt, W., Faraday Discuss. Chem. Soc., 1972, vol. 54, p. 116.

    Article  Google Scholar 

  31. Zawadzki, M., Wierzbicka, P., and Kopyra, J., J. Chem. Phys., 2020, vol. 152, 174304.

    Article  ADS  Google Scholar 

  32. Biermann, D. and Schmidt, W., J. Am. Chem. Soc., 1980, vol. 102, p. 3163.

    Article  Google Scholar 

  33. Karcher, W., Spectral Atlas of Polycyclic Aromatic Compounds, New York: Springer, 1988.

    Book  Google Scholar 

  34. Khatymova, L.Z., Khvostenko, O.G., and Khatymov, R.V., Butlerovsk. Soobshch., 2015, vol. 41, p. 124.

    Google Scholar 

  35. Khatymova, L.Z., Khvostenko, O.G., Khatymov, R.V., and Tseplin, E.E., Butlerovsk. Soobshch., 2014, vol. 39, p. 27.

    Google Scholar 

  36. Khatymova, L.Z., Kinzyabulatov, R.R., and Khvostenko, O.G., High Energy Chem., 2018, vol. 52, p. 38.

    Article  Google Scholar 

  37. Sanche, L. and Schulz, G.J., J. Chem. Phys., 1973, vol. 58, p. 479.

    Article  ADS  Google Scholar 

  38. Inokuchi, H., Org. Electron., 2006, vol. 7, p. 62.

    Article  Google Scholar 

  39. Khvostenko, V.I. and Tolstikov, G.A., Russ. Chem. Rev., 1976, vol. 45, no. 2, p. 127.

    Article  ADS  Google Scholar 

  40. Mazunov, V.A., Shchukin, P.V., Khatymov, R.V., and Muftakhov, M.V., Mass-Spektrom., 2006, vol. 3, p. 11.

    Google Scholar 

  41. Khatymova, L.Z., Mazunov, V.A., and Khatymov, R.V., Istor. Nauki Tekh., 2011, no. 3, p. 11.

  42. Laramée, J.A., Cody, R.B., and Deinzer, M.L., in Encyclopedia of Analytical Chemistry, Chichester: Wiley, 2000.

    Google Scholar 

  43. Voinov, V.G., Vasil’ev, Y.V., Morre, J., et al., Anal. Chem., 2003, vol. 75, 3001.

    Article  Google Scholar 

  44. Ivanova, M.V., Khatymov, R.V., and Terent’ev, A.G., in Fizika molekul i kristallov (Physics of Molecules and Crystals), Ufa: Ross. Akad. Nauk, 2014, p. 108.

  45. Khatymov, R.V., Ivanova, M.V., Terentyev, A.G., and Rybal’chenko, I.V., Russ. J. Gen. Chem., 2015, vol. 85, p. 2596.

    Article  Google Scholar 

  46. Terent’ev, A.G., Khatymov, R.V., and Legkov, M.A., et al., Mass-Spektrom., 2016, vol. 13, p. 193.

    Google Scholar 

  47. Terent’ev, A.G., Dudkin, A.V., and Morozik, Yu.I., Zavod. Lab., Diagn. Mater., 2019, vol. 85, p. 8.

  48. Terentyev A.G., Khatymov R.V., Russ. Chem. Bull., 2020, V. 69, p. 899.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Khatymov.

Additional information

Translated by M. Shmatikov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatymov, R.V., Khatymova, L.Z. & Muftakhov, M.V. Resonance Capture of Electrons by Molecules near the Threshold of Ionization. Bull. Russ. Acad. Sci. Phys. 85, 885–888 (2021). https://doi.org/10.3103/S1062873821080086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821080086

Navigation