Skip to main content
Log in

Abstract

NiTi samples with a density of 6.65 g/cm3 were prepared by forced SHS compaction from Ni + Ti powder mixture in an equiatomic ratio. Synthesized alloy was studied by scanning electron microscopy and X-ray diffraction analysis. It was shown that SHS-compacted sample contain NiTi (B2 + R) in addition to secondary phases: Ti2Ni, Ni4Ti3, and Ni. Electrical resistivity as a function of temperature in the range of 290–1150 K was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Otsuka, K. and Ren, X., Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci., 2005, vol. 50, pp. 511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  2. Petrini, L. and Migliavacca, F., Biomedical applications of shape memory alloys, J. Metall., 2011, vol. 2011, p. 501483. https://doi.org/10.1155/2011/501483

    Article  Google Scholar 

  3. Paranjape, H.M., Bowers, M.L., Mills, M.J., and Anderson, P.M., Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals, Acta Mater., 2017, vol. 132, pp. 444–454. https://doi.org/10.1016/j.actamat.2017.04.066

    Article  CAS  Google Scholar 

  4. Ezaz, T., Wang, J., Sehitoglu, H., and Maier, H.J., Plastic deformation of NiTi shape memory alloys, Acta Mater., 2013, vol. 61, pp. 67–78. https://doi.org/10.1016/j.actamat.2012.09.023

    Article  CAS  Google Scholar 

  5. McNeese, M.D., Lagoudas, D.C., and Pollock, T.C., Processing of TiNi from elemental powders by hot isostatic pressing, Mater. Sci. Eng. A, 2000, vol. 280, no. 2, pp. 334–348. https://doi.org/10.1016/S0921-5093(99)00550-X

    Article  Google Scholar 

  6. Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer, H.P., and Stöver, D., Powder metallurgical fabrication processes for NiTi shape memory alloy parts, Mater. Sci. Eng. A, 2002, vol. 337, nos. 1–2, pp. 254–263. https://doi.org/10.1016/S0921-5093(02)00028-X

    Article  Google Scholar 

  7. Drozdov, I.A., Strukturoobrazovanie nikelida titana v protsessakh poroshkovoi metallurgii (Structure formation of titanium nickelide in the processes of powder metallurgy), Doctoral (Phys.-Math.) Dissertation, Samara, 1998, 190 p.

  8. Boldin, M.S. Fizicheskie osnovy nekhnologii elektroimpul’snogo plazmennogo spekaniya (Physical foundations of electropulse plasma sintering), Nizhnii Novgorod: Nezhegorodskii gosudarstvennyi universitet, 2012, 59 p.

  9. Kayaa, M., Orhana, N., Kurt, B., and Khan, T., The effect of solution treatment under loading on the microstructure and phase transformation behavior of porous NiTi shape memory alloy fabricated by SHS, J. Alloy Compd., 2009, vol 475, pp. 378–382. https://doi.org/10.1016/j.jallcom.2008.07.023

    Article  CAS  Google Scholar 

  10. Shishkovskii, I.V., Lazernyi sintez funktsional’nykh mezostruktur i ob’emnykh izdelii (Laser Synthesis of Functional Mesostructures and Bulk Products), Moscow: Fizmatlit, 2009. 417p.

  11. Belyaev, S., Resnina, N., and Sibirev, A., Peculiarities of residual strain accumulation during thermal cycling of TiNi alloy, J. Alloy. Compd., 2012, vol. 542, pp. 37–42. https://doi.org/10.1016/J.JALLCOM.2012.07.082

    Article  CAS  Google Scholar 

  12. Resnina, N. and Belyaev, S., Influence of annealing on martensitic transformations in porous TiNi-based alloys produced by self-propagating high-temperature synthesis, J. Alloy. Compd., 2013, vol. 577, pp. 159–163. https://doi.org/10.1016/J.JALLCOM.2011.10.118

    Article  Google Scholar 

  13. Itin, V.I. and Nayborodenko,Yu.S., Vysokotemperaturnyi sintez intermetallicheskikh soedinenii (High-temperature synthesis of intermetallic compounds), Tomsk: Izdatel’stvo TGU, 1989, 214 p.

  14. Gunter, V.E., Yasenchuk, Yu.F., Klopotov, A.A., and Khodorenko, V.N., Physical and mechanical properties and structure of superelastic porous alloys based on titanium nickelide, Письма в ЖТФ, 2000, vol. 26, no. 1, pp. 71–75.

    Google Scholar 

  15. Tosuna, G., Ozlerb, L., Kayac, M., and Orhand, N., A study on microstructure and porosity of NiTi alloy implants produced by SHS, J. Alloy. Compd., 2009, vol. 487, nos. 1–2, pp. 605–611. https://doi.org/10.1016/j.jallcom.2009.08.023

    Article  CAS  Google Scholar 

  16. Wisutmethangoon, S., Denmud, N., and Sikong, L., Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique, Mater. Sci. Eng. A, 2009, vol. 515, nos. 1–2, pp. 93–97. https://doi.org/10.1016/j.msea.2009.02.055

    Article  CAS  Google Scholar 

  17. Khodorenko, V.N. and Gyunter, V.É., Investigations of the structure of porous titanium nickelide after thermal treatment, Russ. Phys. J., 2008, vol. 51, no. 10, pp. 1090–1096. https://doi.org/10.1007/s11182-009-9146-2

    Article  CAS  Google Scholar 

  18. Resnina, N., Belayev, S., and Voronkov, A., Influence of chemical composition and pre-heating temperature on the structure and martensitic transformation in porous TiNi-based shape memory alloys produced by self-propagating high-temperature synthesis, Intermetallics, 2013, vol. 32, pp. 81–89. https://doi.org/10.1016/J.INTERMET.2012.08.009

    Article  CAS  Google Scholar 

  19. Osipovich, K.S., Vetoshkina, N.G., Panchenko, E., and Chumlyakov, Y., Effect of one variant of Ti3Ni4 particles on stress-induced martensitic transformations in <111>-oriented Ti49.2Ni50.8 single crystals, IOP Conf. Series: Mater. Sci. Eng., 2015, vol. 93, p. 012041. https://doi.org/10.1088/1757-899X/93/1/012041

    Article  CAS  Google Scholar 

  20. Panchenko, E.Yu, Ovsyannikov, A.V., Kireeva, I.V., Chumlyakov, Yu.I., Aksenov, V.B., and Kuksa, M.P., Shape memory effect, superelasticity, and elastic twinning of R-martensite in Ti–50.8 at % Ni single crystals aged under stress, Физическая мезомеханика, 2004, vol. 7, pp. 237–240.

  21. Belyaev, S.P., Resnina, H.H., Gracheva, A.G., and Voronkov, A.V., Mechanical behavior of the porous alloy Ti–45.0 at % Ni in compression, Materialy konferentsii “Splavy s effektom pamyati formy: svoistva, tekhnologii, perspektivy”, Vitebsk, 2014, pp. 125–127.

  22. Jonathan, C.Y., Chu, C.L., and Wang, S.D., Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis, Mater. Lett., 2004, vol. 58, no. 11, pp. 1683–1686. https://doi.org/10.1016/j.matlet.2003.10.045

    Article  CAS  Google Scholar 

  23. Kaya, M., Orhan, N., and Tosun, G., The effect of the combustion channels on the compressive strength of porous NiTi shape memory alloy fabricated by SHS as implant material, Curr. Opin. Solid State Mater. Sci., 2010, vol. 14, pp. 21–25. https://doi.org/10.1016/j.cossms.2009.07.002

    Article  CAS  Google Scholar 

  24. Miyazaki, S., Igo, Y., and Otsuka, K., Effect of thermal cycling on the transformation temperatures of TiNi alloys, Acta Metall., 1986, vol. 34, pp. 2045–2051. https://doi.org/10.1016/0001-6160(86)90263-4

    Article  CAS  Google Scholar 

  25. Pityulin, A.N., Silovoe kompaktirovanie v SVS protsessakh (Force compaction in SHS processes), Samorasprostranyayushchiisya vysokotemperaturnyi sintez: teoriya i praktika (Self-Propagating High-Temperature Synthesis: Theory and Practice), Chernogolovka: Territoriya, 2001, pp. 333–353.

    Google Scholar 

  26. Bogatov, Yu.V., Barinov, V.Yu., and Shcherbakov, V.A., Influence of the morphology of titanium powders on the SHS parameters and structure of compacted titanium diboride, Перспективные материалы, 2020, no. 3, pp. 50–60. https://doi.org/10.30791/1028-978X-2020-3-50-60

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shcherbakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golosova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatov, Y.V., Shcherbakov, V.A., Karpov, A.V. et al. Forced SHS Compaction of NiTi. Int. J Self-Propag. High-Temp. Synth. 31, 247–252 (2022). https://doi.org/10.3103/S1061386222050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386222050028

Keywords:

Navigation