Skip to main content
Log in

Mapping weight matrix of a neural network’s layer onto memristor crossbar

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

The problems of programming memristor array (crossbar) are considered. A voltage pulse duration to set the desired value of memristor resistance is evaluated. An algorithm for mapping weight matrix of the neurons layer onto memristor crossbar is proposed. A simulation of adaptive adder with memristor synapses is carried out in the LTspice using the proposed method of mapping. The possibility of using the adaptive adder for image recognition is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua, L., Memristor—the missing circuit element, Proc. IEEE Transactions on Circuit Theory, 1971, vol. 18, pp. 507–519.

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S., The missing memristor found, Nature, 2008, vol. 453, pp. 80–83.

    Article  Google Scholar 

  3. URL: http://so-l.ru/news/show/3677159

  4. Pershin, Y. and Di Ventra, M., Experimental demonstration of associative memory with memristive neural networks, Neural Networks, 2010, vol. 23, no. 7, pp. 881–886.

    Article  Google Scholar 

  5. Chua, L., Resistance switching memories are memristors, Applied Physics A: Materials Science & Processing, 2011, vol. 102, no. 4, pp. 765–783.

    Article  Google Scholar 

  6. Ho, Y., Huang, G.M., and Li, P., Nonvolatile memristor memory: device characteristics and design applications, Proc. Int. Conf. on Computer-Aided Design (ICCAD), 2009, pp. 485–490.

    Google Scholar 

  7. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., and Lu, W., Nanoscale memristor device as synapse in neuromorphic systems, Nanoletters, 2010, vol.10, no. 4, pp. 1297–1301.

    Article  Google Scholar 

  8. Kavehei, O., Memristive devices and circuits for computing, memory, and neuromorphic applications, PhD Thesis, The University of Adelaida, Australia, 2011.

    Google Scholar 

  9. Lehtonen, E., Memristive Computing, University of Turku, Finland, 2012.

    Google Scholar 

  10. Wu, Q., Liu, B., Chen, Y., Li, H., Chen, Q., and Qiu, Q., Bio-Inspired computing with resistive memories-Models, architectures and applications, Proc. of 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 834–837.

  11. Hu, M., Li, H., Wu, Q., and Rose, G.S., Hardware realization of BSB recall function using memristor crossbar arrays, DAC 2012, June 3–7, 2012, San Francisco, California, USA, pp. 498–503.

  12. Alibart, F., Zamanidoost, E., and Strukov, D.B., Pattern classification by memristive crossbar circuits using ex situ and in situ training, Nature Communications, 2013, pp. 1–7.

    Google Scholar 

  13. Truong, S.N. and Min, K.-S., New memristor-based crossbar array architecture with 50% area reduction and 48% power saving for matrix-vector multiplication of analog neuromorphic computing, Journal of Semiconductor Technology and Science, 2014, vol. 14, no. 3, pp. 356–363.

    Article  Google Scholar 

  14. Lu, W., Kim, K.-H., Chang, T., and Gaba, S., Two-terminal resistive switches (memristors) for memory and logic applications, Proc. 16th Asia and South Pacific Design Automation Conference (ASPDAC’11), 2011, pp. 217–223.

    Chapter  Google Scholar 

  15. Taha, T.M., Hasan, R., Yakopcic, C., and McLean, M.R., Exploring the design space of specialized multicore neural processors, Proc. of Int. Joint Conf. on Neural Networks, Dallas, USA, 2013, pp. 2633–2640.

    Google Scholar 

  16. Volodin, V.Ya., Kompyuternoe modelirovanie elektronnykh skhem [Computer modeling of electronic circuits], St. Petersburg: BHV-Petersburg, 2010 [in Russian].

    Google Scholar 

  17. LTspice IV. URL: http://www.linear.com/designtools/software/#LTspice

  18. Biolek, Z., Biolek, D., and Biolkova, V., SPICE model of memristor with nonlinear dopant drift, Radioengineering, vol. 18, no. 2, pp. 210–214.

  19. Falatic, M., Memristor simulation with LTspice—a practical example! URL: http://www.falatic.com/index.php/69/memristor-simulation-with-ltspice-a-practical-example

  20. Alibart, F., Zamanidoost, E., and Strukov, D.B., Pattern classification by memristive crossbar circuits using ex situ and in situ training, Nature Communications, 2013, pp. 1–7.

    Google Scholar 

  21. Gorban, A.N. and Rossiev, D.A., Neironnye seti na personalnom compyutere [Neural networks on PC], Novosibirsk: Nauka, 1996 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Tarkov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkov, M.S. Mapping weight matrix of a neural network’s layer onto memristor crossbar. Opt. Mem. Neural Networks 24, 109–115 (2015). https://doi.org/10.3103/S1060992X15020125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X15020125

Keywords

Navigation