Skip to main content
Log in

Inhibiting pyrotechnic compositions for new means of initiation

  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

This article gives a brief review of the main drawbacks of industrial pyrotechnic decelerators produced in different countries. The basic requirements for pyrotechnic decelerators to develop the mining industry and improve portable explosion-jet complexes have been substantiated. As a result of studies, new inhibiting pyrotechnic compositions with a high stability of operating performance and physicochemical properties have been developed. Critical conditions of the onset of stable combustion of new pyrotechnic compositions have been established. The dependence of changes in temperature of reaction products on the combustion rate of the designed compositions and the conditions for subsequent transfer of their combustion to detonation of explosive systems have been established. Recommendations for the component content of the developed compositions and the reduction of their unit cost have been made. In addition, recommendations for the optimization of mass–dimensional characteristics of the means of initiation on the basis of the developed inhibiting pyrotechnic compositions for various conditions of their application and storage have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solov’ev, V.O., Kutuzov, B.N., and Orlov, Yu.N., The way to create compact explosion-reaction complex and fields of its application, Gorn. Zh., 2008, no. 5, pp. 50–53.

    Google Scholar 

  2. Soloviev, V.O. and Shvedov, I.M., Movable explosion-reaction complexes for exploring the Far East, Probl. Mashinostr. Avtomatiz., 2013, no. 3, pp. 139–144.

    Google Scholar 

  3. Solov’ev, V.O., Kelner, M.S., and Korovkin, Yu.V., Compact systems of electrical initiation for controlled explosion rocks drilling under complicated conditions, Probl. Mashinostr. Avtomatiz., 2013, no. 1, pp. 106–116.

    Google Scholar 

  4. Solov’ev, V.O., RF Patent 2070708 IPC 6 F 42 B 3/10, Izobret. Polezn. Modeli, 1996, no. 35.

  5. Solov’ev, V.O., RF Patent 2230053 IPC 7 C 06 B 33/00, 33/12, Izobret. Polezn. Modeli, 2004, no. 16.

  6. USA Patent 2478918, 30.11.45.

  7. German Patent 2416920 IPC 5 C 06 B 33/00, 08.04.1974.

  8. Sweden Patent 81032088 IPC 5 C 06 B 33/00, 18.08.1986.

  9. TU (Technical Requirements) no. 212-001-49534204-2003: A, B, C Amorphous Boron Grades, 2003.

  10. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Brief Chemical Handbook), Leningrad: Khimiya, 1977.

    Google Scholar 

  11. Karapet’yants, M.Kh. and Drakin, S.I., Obshchaya i neorganicheskaya khimiya (General and Inorganic Chemistry), Moscow: Khimiya, 1994.

    Google Scholar 

  12. Kamenetskaya, D.S., Piletskaya, I.B., and Shiryaev, V.I., Zhelezo vysokoy stepeni chistoty (High-Purity Iron), Moscow: Metallurgiya, 1978.

    Google Scholar 

  13. Khimicheskya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Soviet encyclopedia, 1988, vol. 1.

  14. Lidin, R.A. et al., Khimicheskie svoystva nneorganicheskikh veshghestv. Uchebnoe posobie dlya VUZov (Chemical Properties of Inorganic Substances. Student’s Book for High School), Moscow. Khimiya, 2000.

    Google Scholar 

  15. Spravochnik khimika (Handbook for Chemists), Nikolskii, B.P. et al., Eds., Leningrad: Khimiya, 1971, vol. 2.

  16. Spravochnik khimika (Handbook for Chemists), Leningrad–Moscow: Khimiya, 1966, vol. 5.

  17. Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975.

    Google Scholar 

  18. Hansen, M. and Anderko, K., Constitution of Binary Alloys, New York: McGraw-Hill, 1958.

    Google Scholar 

  19. Portnoi, K.I. and Samsonov, G.V., Boridnie splavy (Boride Alloys), Moscow: VINITI, 1959.

    Google Scholar 

  20. Povolotskii, D.Ya., Roshchin, V.E., Ryss, M.A., et al., Elektrometallurgiya stali i ferrosplavov (Electrometallurgy of Steel and Ferroalloys), Moscow: Metallurgiya, 1974.

    Google Scholar 

  21. Schenck, H., Nacken, M., Butenuth, E., and Potthast, E., Forschungsber, Landes Nordrhein-Westfalen, 1966, no. 1589.

    Google Scholar 

  22. Michel, A., Bull. Soc. Chim. France, 1961, no. 1, pp. 143–148.

    Google Scholar 

  23. Tsuzuki, A., Sago, S., Hirano, S.-I., and Naka, S., J. Mater. Sci., 1984, vol. 19, no. 8, pp. 2513–2518.

    Article  Google Scholar 

  24. Perminov, V.P. and Neronov, V.A., Materialovedenie i tekhnologiya materialov (Materials Science and Materials Technology), Novosibirsk: Siberian State Univ. of Geosystem and Technology, 2007.

    Google Scholar 

  25. Gurevich, S.E., Fatigue strength of high-strength steel, Izv. Akad. Nauk SSSR, Met., 1965, no. 4, pp. 126–130.

    Google Scholar 

  26. Spravochnik: svoistva, poluchenie i primenenie tugoplavkikh soedinenii (Properties, Production and Application of High-Melting Compounds. Handbook), Kosolapov, T.Ya., Ed., Mosocw; Metallurgiya, 1986.

  27. Bates, S.E. et al., Synthesis of titanium boride (TiB)2 nanocrystallites by solution-phase processing, J. Mater. Res., 1995, vol. 10, p. 2599.

    Article  Google Scholar 

  28. Hwang, A.Y. and Lee, J.K., Preparation of TiB2 powders by mechanical alloying, Mater. Lett., 2002, vol. 54, no. 1.

    Google Scholar 

  29. Gu, Y. et al., A mild solvothermal route to nanocrystalline titanium diboride, J. Alloys Compounds, 2003, vol. 352, no. 325.

    Google Scholar 

  30. Luchinskii, G.P., Khimiya titana (Chemistry of Titanium), Moscow: Khimiya, 1971.

    Google Scholar 

  31. Shakhno, I.V., Shevtsova, Z.N., Fedorov, P.I., and Korovin, S.S., Khimiya i tekhnologiya redkikh i rasseyannykh elemrentov (Chemistry and Technology of Rare and Scattered Elements), Bolshakov, K.A., Ed., Moscow: Vysshaya shkola, 1976.

  32. TU (Technical Requirement) no. 84 07513406-036-94: Waveguide, 1994.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. O. Solov’ev or E. A. Klochko.

Additional information

Original Russian Text © V.O. Solov’ev, V.V. Patsyuk, E.A. Klochko, 2015, published in Problemy mashinostroeniya i avtomatizatsyi, 2014, No. 1, pp. 136–142.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, V.O., Patsyuk, V.V. & Klochko, E.A. Inhibiting pyrotechnic compositions for new means of initiation. J. Mach. Manuf. Reliab. 44, 609–615 (2015). https://doi.org/10.3103/S1052618815070146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618815070146

Keywords

Navigation