Skip to main content
Log in

Improvement of Functional Properties of Alloys by Electron Beam Treatment

  • Published:
Steel in Translation Aims and scope

Abstract—This article presents an overview of Russian and Western works on the application of intensive pulse electron beams for surface treatment of metals, alloys, metal ceramics and ceramic materials. Application advantages of electron pulse beams are highlighted in comparison with laser beams, plasma flows, ion beams. Promising trends of electron beam treatment are analyzed: (1) surface smoothing, elimination of surface microcracks with simultaneous modification of structural phase state of surface layer in order to develop high performance technologies of finishing treatment of critical metal items of complicated shape made of Ti–6Al–4V alloy and titanium, steel of various grades, WC–10% Co solid alloy, aluminum; (2) elimination of micro-burrs formed upon fabrication of precision compression molds (SKD11 steel) and biomedical items (Ti–6Al–4V alloy); (3) finishing surface treatment of compression molds and dies; (4) improvement of functional properties of metallic biomaterials (stainless steel, titanium and its alloys, alloys based on titanium nickelide with shape memory effect, magnesium alloys; (5) treatment of medical items and implants; (6) formation of surface alloys for powerful electrodynamic systems; (7) improvement of specifications of blades of aircraft engines and compressor blades; (8) formation of thermal barrier coatings applied onto surfaces of combustion chambers. Upon correct selection of process variables, such as boosting voltage, electron beam energy density, as well as number and duration of pulses, it is demonstrated that thorough control and/or manipulation of characteristics of structural phase state and surface properties are possible. In order to improve material properties and to increase operation lifetime of items, the important factor is the structure modification aiming at the formation of submicro- or nanoscale grain (or subgrain structure).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ozur, G.E. and Proskurovskii, D.I., Istochniki nizkoenergeticheskikh sil’notochnykh elektronnykh puchkov s plazmennym anodom (Source of Low-Energy High-Current Electron Beams with Plasma Anode), Koval’, N.N., Ed., Novosibirsk: Nauka, 2018. doi https://doi.org/10.15372/Sources2018OGE

  2. Evolutsiya struktury poverkhnostnogo sloya stali, podvergnutoi elektronno-ionno-plazmennym metodam obrabotki (Evolution of Surface Layer Structure of Steel Subjected to ElectronIonPlasma Treatment), Koval’, N.N. and Ivanov, Yu.F., Eds., Tomsk: Izd-vo Nauchn.-Tekh. Literatury, 2016.

  3. Ivanov, Yu.F., Elektronno-ionno-plazmennaya modifikatsiya poverkhnosti tsvetnykh metallov i splavov (Electron-Ion-Plasma Modification of Surface of Non- Ferrous Metals and Alloys), Tomsk: Izd-vo Nauchn.-Tekh. Literatury, 2016.

  4. Gromov, V.E., Ivanov, Yu.F., Vorobiev, S.V., and Konovalov, S.V., Fatigue of Steels Modified by High Intensity Electron Beams, Cambridge: Int. Science Publ, 2015.

    Google Scholar 

  5. Uno, Y., Okada, A., Uemura, K., and Raharjo, P., Method for surface treating a die by electron beam irradiation and a die treated thereby, US Patent 7049539, 2006.

  6. Murray, J.W., Kinnell, P.K., Cannon, A.H., Bailey, B., and Clare, A.T., Surface finishing of intricate metal mould structures by large-area electron beam irradiation, Precis. Eng., 2013, vol. 37, no. 2, pp. 443–450.  https://doi.org/10.1016/j.precisioneng.2012.11.007

    Article  Google Scholar 

  7. Goriainov, V., Cook, R.B., Murray, J.W., Walker, J.C., Dunlop, D.G., Clare, A.T., and Oreffo, R.O.C., Human skeletal stem cell response to multiscale topography induced by large area electron beam irradiation surface treatment, Front. Bioeng. Biotechnol., 2018, vol. 6, p. 91.  https://doi.org/10.3389/fbioe.2018.00091

    Article  Google Scholar 

  8. Manufacturing Techniques for Materials. Engineering and Engineered, Srivatsan, T.S., Sudarshan, T.S., and Manigandan, K., Eds., Boca Raton, Fla.: CRC Press, 2018.

    Google Scholar 

  9. Okada, A., Uno, Y., Yabushita, N., Uemura, K., and Raharjo, P., High efficient surface finishing of bio-titanium alloy by large-area electron beam irradiation, J. Mater. Process. Technol., 2004, vol. 149, nos. 1–3, pp. 506–511. https://doi.org/10.1016/j.jmatprotec.2004.02.017

  10. Tokunaga, J., Kojima, T., Kinuta, S., Wakabayashi, K., Nakamura, T., Yatani, H., and Sohmura, T., Large-area electron beam irradiation for surface polishing of cast titanium, Dental Mater. J., 2009, vol. 28, no. 5, pp. 571–577.  https://doi.org/10.4012/dmj.28.571

    Article  CAS  Google Scholar 

  11. Uno, Y., Okada, A., Uemura, K., Raharjo, P., Sano, S., Yu, Z., and Mishima, S., A new polishing method of metal mold with large-area electron beam irradiation, J. Mater. Process. Technol., 2007, vols. 187–188, pp. 77–80. https://doi.org/10.1016/j.jmatprotec.2006.11.080

  12. Okada, A., Okamoto, Y., Uno, Y., and Uemura, K., Improvement of surface characteristics for long life of metal molds by large-area EB irradiation, J. Mater. Process. Technol., 2014, vol. 214, no. 8, pp. 1740–1748.  https://doi.org/10.1016/j.jmatprotec.2014.02.028

    Article  CAS  Google Scholar 

  13. Okada, A., Kitada, R., Okamoto, Y., and Uno, Y., Surface modification of cemented carbide by EB polishing, CIRP Ann. Manuf. Technol., 2011, vol. 60, no. 1, pp. 575–578. https://doi.org/10.1016/j.cirp.2011.03.107

  14. Shinonaga, T., Okada, A., Liu, H., and Kimura, M., Magnetic fixture for enhancement of smoothing effect by electron beam melting, J. Mater. Process. Technol., 2018, vol. 254, pp. 229–237.  https://doi.org/10.1016/j.jmatprotec.2017.11.024

    Article  Google Scholar 

  15. Okada, A., Yonehara, H., and Okamoto, Y., Fundamental study on micro-deburring by large-area EB irradiation, Procedia CIRP, 2013, vol. 5, pp. 19–24.  https://doi.org/10.1016/j.procir.2013.01.004

    Article  Google Scholar 

  16. Zhang, K., Zou, J., Grosdidier, T., Dong, C., and Yang, D., Improved pitting corrosion resistance of AISI 316L stainless steel treated by high current pulsed electron beam, Surf. Coat. Technol., 2006, vol. 201, nos. 3–4, pp. 1393–1400. https://doi.org/10.1016/j.surfcoat.2006.02.008

  17. Rotshtein, V.P., Gyuntsel’, R., Markov A.B., Proskurovskii D.I., Fam M.T, Rikhter E., and Shulov, V.A., Surface modification of a titanium alloy with low-energy high-current electron beam at elevated initial temperatures, Fiz. Khim. Obrab. Mater., 2006, vol. 1, pp. 62–72.

    Google Scholar 

  18. Zhang, X.D., Hao, S.Z., Li, X.N., Dong, C., and Grosdidier, T., Surface modification of pure titanium by pulsed electron beam, Appl. Surf. Sci., 2011, vol. 257, no. 13, pp. 5899–5902.  https://doi.org/10.1016/j.apsusc.2011.01.136

    Article  CAS  Google Scholar 

  19. Zhang, K.M., Yang, D.Z., Zou, J.X., Grosdidier, T., and Dong, C., Improved in vitro corrosion resistance of a NiTi alloy by high current pulsed electron beam treatment, Surf. Coat. Technol., 2006, vol. 201, no. 6, pp. 3096–3102. https://doi.org/10.1016/j.surfcoat.2006.06.030

  20. Li, M.C., Hao, S.Z., Wen, H., and Huang, R.F., Surface composite nanostructures of AZ91 magnesium alloy induced by high current pulsed electron beam treatment, Appl. Surf. Sci., 2014, vol. 303, pp. 350–353.  https://doi.org/10.1016/j.apsusc.2014.03.004

    Article  CAS  Google Scholar 

  21. Uvarov A., Uemura K., Alexandrov S., Murayama H., Soba R., Molecular properties characterization of PTFE films deposited by hot wire CVD, Session Report. 16th Symp. on High Current Electronics and 10th Conference on Materials Modification, Tomsk, 2010, Tomsk, 2010, pp. 500–503.

  22. Batrakov, A.V., Onischenko, S.A., Kurkan, I.K., Rostov, V.V., Yakovlev, E.V., Nefedtsev, E.V., and Tsygankov, R.V., Comparative study of breakdown strength of vacuum insulation in gaps with electron-beam polished electrodes under pulsed DC and microwave electric fields, Proc. 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum, 2018, vol. 1, pp. 77–80.  https://doi.org/10.1109/deiv.2018.8537014

  23. Proskurovsky, D.I., Rotshtein, V.P., and Ozur, G.E., Use of low-energy, high-current electron beams for surface treatment of materials, Surf. Coat. Technol., 1997, vol. 96, no. 1, pp. 117–122.  https://doi.org/10.1016/S0257-8972(97)00093-5

    Article  CAS  Google Scholar 

  24. Cai, J., Lv, P., Guan, Q., Xu, X., Lu, J., Wang, Z., and Han, Z., Thermal cycling behavior of thermal barrier coatings with MCrAlY bond coat irradiated by high-current pulsed electron beam, ACS Appl. Mater. Interfaces, 2016, vol. 47, no. 8, pp. 32541–32556.  https://doi.org/10.1021/acsami.6b11129

    Article  CAS  Google Scholar 

  25. Ivanov, Yu.F., Gromov, V.E., Grishunin, V.A., Teresov, A.D., and Konovalov, S.V., Surface layer structure and fatigue life of rail steel irradiated by a high-intensity electron beam, Fiz. Mezomekh., 2013, vol. 16, no. 2, pp. 47–53.

    CAS  Google Scholar 

  26. Ivanov, Yu.F., Gromov, V.E., Grishunin, V.A., and Konovalov, S.V., Rail steel treated by electron beam, its phase composition, structure, and fatigue life, Vopr. Materialoved., 2013, vol. 73, no. 1, pp. 20–30.

    Google Scholar 

  27. Gromov, V.E., Ivanov, Yu.F., Grishunin, V.A., Raikov, S.V., and Konovalov, S.V., Scale levels of the structure-phase states and fatigue life of rail steel after electron-beam treatment, Usp. Fiz. Met., 2013, vol. 14, no. 1, pp. 67–80.

    Article  CAS  Google Scholar 

  28. Gao, B., Hu, L., Li, S.-W., Hao, Y., Zhang, Y.-D., Tu, G.-F., and Grosdidier, T., Study on the nanostructure formation mechanism on the hypereutectic Al–17Si alloy induced by pulsed electron beam, Appl. Surf. Sci., 2015, vol. 346, pp. 147–157.  https://doi.org/10.1016/j.apsusc.2015.04.029

    Article  CAS  Google Scholar 

  29. Gromov, V.E., Ivanov, Yu.F., Glezer, A.M., Konovalov, S.V., and Alsaraeva, K.V., Structural evolution of silumin treated with a high-intensity pulse electron beam and subsequent fatigue loading up to failure, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, pp. 1169–1172.  https://doi.org/10.3103/S1062873815090087

    Article  CAS  Google Scholar 

  30. Kim, J.S., Lee, W.J., and Park, H.W., The state of the art in the electron beam manufacturing processes, Int. J. Precis. Eng. Manuf., 2016, vol. 17, no. 11, pp. 1575–1585.  https://doi.org/10.1007/s12541-016-0184-8

    Article  Google Scholar 

  31. Ivanov, Yu.F., Itin, V.I., Lykov, S.V., Markov, A.B., Rotshtein, V.P., Tukhfatullin, A.A., and Dikii, N.P., Structural analysis of heat-affected zone of steel 45 treated by low-energy high-current electron beam, Fiz. Met. Metalloved., 1993, vol. 75, no. 5, pp. 103–112.

    CAS  Google Scholar 

  32. Markov, A.B. and Rotshtein, V.P., Calculation and experimental determination of size of hardening and tempering zones in hardened U7A steel irradiated with a pulsed electron beam, Poverkhnost, 1998, vol. 4, pp. 83–89.

    Google Scholar 

  33. Structure and Properties of Metals at Different Energy Effects and Treatment Technologies, Klimenov, V.A. and Starenchenko, V.A., Eds., Trans. Tech. Publ., 2014, p. 324.

    Google Scholar 

  34. Ivanov, Yu.F., Zagulyaev, D.V., Nevskii, S.A., Gromov, V., Sarychev, V.D., and Semin, A.P., Microstructure and properties of hypoeutectic silumin treated by high-current pulsed electron beams, Progr. Phys. Met., 2019, vol. 20, no. 3, pp. 451–490.  https://doi.org/10.15407/ufm.20.03.447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. F. Ivanov, V. E. Gromov, D. V. Zagulyaev, S. V. Konovalov or Yu. A. Rubannikova.

Additional information

Translated by I. Moshkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Gromov, V.E., Zagulyaev, D.V. et al. Improvement of Functional Properties of Alloys by Electron Beam Treatment. Steel Transl. 52, 71–75 (2022). https://doi.org/10.3103/S0967091222010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222010120

Navigation