Skip to main content
Log in

Simulation of Direct-Current Electromagnetic Forces Acting on a Droplet of Liquid Metal under Electroslag Remelting

  • Published:
Steel in Translation Aims and scope

Abstract

The paper presents mathematical and computer simulation of the behavior of liquid electrode metal droplets during electroslag remelting (ESR) with the use of a direct current source. The studies on the effect of an electric field generated by direct current have made it possible to reveal the fact that the droplet trajectory deviates from the electrode axis. Both the flux of electrons and the droplets of the electrode metal undergo the action of electromagnetic forces, which leads to the displacement with respect to the remelted electrode axis. Thus, this effect causes the liquid metal bath to destabilize, and crystal heterogeneity appears. In turn, the use of external factors influencing the ESR process can make it possible to stabilize the liquid metal bath even in the case of a direct current. Thus, one could use centrifugal forces that can occur when the consumable electrode rotates around its own axis. In order to determine optimal parameters for rotation frequency, it is necessary to estimate an effective magnitude of the magnetic field occurring during direct current remelting. The simulation has been carried out using an Ansys Fluent 16.0 software package by the example of remelting 12Khl8N10T steel under an ANF-6 flux. The calculation algorithm in the Ansys Fluent environment is based on a finite element method. In this paper, the mathematical apparatus has not been changed being used in the initial form. A method of magnetic induction has been used. The database of the occurring process is constructed according to a finite element grid with certain, but sufficient adequacy and quality level. Each element contains information on the model at a given point specified for this simulation process. It is revealed that the trajectory of the electrode metal droplet is changed by an electric field from the side opposite to the direction along which the droplet flows. The average length of the path traversed by a liquid metal droplet from the mold axis to the inner surface ranges from 5 to 15 cm. The motion of an electrode metal droplet with no external magnetic field impact has been simulated. This simulation has made it possible to determine the movement direction of electrode metal droplets and the value of external force amounting to 0.067 N required for stabilizing the liquid metal bath in the course of ESR using direct current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hernandez-Morales, B. and Mitchell, A., Review of mathematical models of fluid flow, heat transfer, and mass transfer in electroslag remelting process, Ironmaking Steelmaking, 1999, vol. 26, no. 6, pp. 423–438. https://doi.org/10.1179/030192399677275

    Article  CAS  Google Scholar 

  2. Ludwig, A., Kharicha, A., and Wu, M., Modeling of multiscale and multiphase phenomena in materials processing, Metall. Mater. Trans. B, 2014, vol. 45, no. 1, pp. 36–43. https://doi.org/10.1007/s11663-013-9820-1

    Article  CAS  Google Scholar 

  3. Kawakami, M., Takenaka, T., and Ishikawa, M., Electrode reactions in DC electroslag remelting of steel rod, Ironmaking Steelmaking, 2002, vol. 29, no. 4, pp. 287–292. https://doi.org/10.1179/030192302225005132

    Article  CAS  Google Scholar 

  4. Paar, A., Schneider, R., Zeller, P., Reiter, G., Paul, S., Siller, I., and Wurzinger, P., Influence of the polarity on the cleanliness level and the inclusion types in the ESR process, Proc. 2013 Int. Symp. on Liquid Metal Processing and Casting, Hoboken, NJ: Wiley, 2013, pp. 29–36. https://doi.org/10.1002/9781118830857.ch4

  5. Wang, Q., Liu, Y., He, Z., Li, G., and Li, B., Numerical analysis of effect of current on desulfurization in electroslag remelting process, ISIJ Int., 2017, vol. 57, no. 2, pp. 329–336. https://doi.org/10.2355/isijinternational.ISIJINT-2016-566

    Article  CAS  Google Scholar 

  6. Wang, Q., Li, G., He, Z., and Li, B., A three-phase comprehensive mathematical model of desulfurization in electroslag remelting process, Appl. Therm. Eng., 2017, vol. 114, pp. 874–886. https://doi.org/10.1016/j.applthermaleng.2016.12.035

    Article  CAS  Google Scholar 

  7. Wang, Q., He, Z., Li, G., Li, B., Zhu, C., and Chen, P., Numerical investigation of desulfurization behavior in electroslag remelting process, Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 943–951. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.022

    Article  CAS  Google Scholar 

  8. Wang, Q., Liu, Y., Wang, F., Li, G., Li, B., and Qiao, W., Numerical study on the effect of electrode polarity on desulfurization in direct current electroslag remelting process, Metall. Mater. Trans. B, 2017, vol. 48, no. 5, pp. 2649–2663. https://doi.org/10.1007/s11663-017-1040-7

    Article  CAS  Google Scholar 

  9. Wang, Q., Liu, Y., Li, G., Gao, Y., He, Z., and Li, B., Predicting transfer behavior of oxygen and sulfur in electroslag remelting process, Appl. Therm. Eng., 2018, vol. 129, pp. 378–388. https://doi.org/10.1016/j.applthermaleng.2017.10.062

    Article  CAS  Google Scholar 

  10. Kelkar, K.M., Suhas, V., Patankar, S.V., Srivatsa, S., Minisandram, R.S., Evans, D.G., and de Barbadillo, J.J., Computational modeling of electroslag remelting (ESR) process used for the production of high-performance alloys, Proc. 2013 Int. Symp. on Liquid Metal Processing and Casting, Hoboken, NJ: Wiley, 2013, pp. 3–12. https://doi.org/10.1007/978-3-319-48102-9_1

  11. Kharicha, A., Ludwig, A., and Wu, M., Droplet formation in small electroslag remelting processes, Proc. 2011 Int. Symp. on Liquid Metal Processing and Casting, Krane, M., Bellot, J., Jardy, A., Williamson, R.L., and Ballantyne, S., Eds., Materials Park, OH: ASM Int., 2011, pp. 113–119.

  12. Kelkar, K.M., Patankar, S.V., and Mitchell, A., Computational modeling of the electroslag remelting (ESR) process for the production of ingots of high-performance alloys, Proc. 2005 Int. Symp. on Liquid Metal Processing and Casting, Lee, P.D., et al., Eds., Materials Park, OH: ASM Int., 2005, pp. 137–144.

  13. Patel, A.D., Analytical model for electromagnetic fields in ESR and VAR processes, Proc. 2003 Int. Symp. on Liquid Metal Processing and Casting, Lee, P.D., et al., Eds., Materials Park, OH: ASM Int., 2003, pp. 205–214.

  14. Pyatygin, D.A. and Chumanov, I.V., Removal of non-metallic inclusions at ESP at direct current, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2006, no. 7, pp. 25–26.

  15. Pyatygin, D.A. and Chumanov, I.V., Assessment of electromagnetic forces arising at ESP at constant current, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2007, no. 7, pp. 19–22.

  16. Chumanov, V.I., Chumanov, I.V., and Sergeev, Yu.S., Stabilization of the liquid metal bath during DC ESR, Russ. Metall. (Engl. Transl.), 2018, vol. 2018, no. 6, pp. 557–560.

  17. Chumanov, I.V. and Pyatygin, D.A., Features of electroslag remelting with direct current and rotation of consumable electrode, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2006, no. 3, pp. 22–25.

  18. Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melancon, J., Pelton, A.D., and Petersen, S., FactSage thermochemical software and databases, 2010–2016, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2014, vol. 26, no. 2, pp. 189–228. https://doi.org/10.1016/S0364-5916(02)00035-4

    Article  Google Scholar 

  19. Bale, C.W., Belisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Hack, K., Jung, I.-H., Kang, Y.-B., Melancon, J., Pelton, A.D., Robelin, C., and Petersen, S., FactSage thermochemical software and databases—recent developments, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2009, vol. 33, no. 2, pp. 295–311. https://doi.org/10.1016/j.calphad.2008.09.009

    Article  CAS  Google Scholar 

  20. Bale, C.W., Belise, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi, A.E., Hack, K., Jung, I.-H., Kang, Y.-B., Melancon, J., Pelton, A.D., and Petersen, S., Reprint of: FactSage thermochemical software and databases, 2010–2016, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2016, vol. 55, pp. 1–19. https://doi.org/10.1016/j.calphad.2016.07.004

    Article  CAS  Google Scholar 

Download references

Funding

The work has been financially supported by the Russian Foundation for Basic Research, project no. 19-38-90081.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Chumanov, I. A. Alekseev or D. V. Sergeev.

Additional information

Translated by O. Polyakov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumanov, I.V., Alekseev, I.A. & Sergeev, D.V. Simulation of Direct-Current Electromagnetic Forces Acting on a Droplet of Liquid Metal under Electroslag Remelting. Steel Transl. 51, 456–460 (2021). https://doi.org/10.3103/S0967091221070032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091221070032

Keywords:

Navigation