Skip to main content
Log in

Regulatory Non-Coding RNAs in Crops Health and Disease

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

For many years it was thought that the function of RNA was limited to the process of producing proteins. In recent years, scientific discoveries have been proving the multiple roles of different RNAs in different regulatory mechanisms. These RNA’s are collectively called non-coding RNA’s (ncRNA’s). This review presents the latest advances on the different classes of non-coding RNA’s (ncRNA’s) from their function to mechanisms of action. Special emphasis is given to the long non-coding RNAs as new regulatory elements in eukaryote gene expression and in the processes of epigenetic regulation in plants. We believe that increasing studies of regulatory non-coding RNAs in plants will provide a better understanding of the different types of genes related to crop resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

DATA AVAILABILITY

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

REFERENCES

  1. Pevsner, J., Bioinformatics and Functional Genomics, Hoboken, NJ: John Wiley and Sons, 2009.

    Book  Google Scholar 

  2. Crick, F., Central dogma of molecular biology, Nature, 1970, vol. 227, no. 5258, pp. 561–563. https://doi.org/10.1038/227561a0

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Alberts, B., et al., Molecular Biology of the Cell, New York: Garland, 2002.

    Google Scholar 

  4. Lodish, H., et al., Molecular Cell Biology, W.H. Freeman, 2007.

    Google Scholar 

  5. Mercer, T.R., et al., Long non-coding RNAs: Insights into functions, Nat. Rev. Genet., 2009, vol. 10, no. 3, pp. 155–159.

  6. Sabin, L.R., et al., Dogma derailed: The many influences of rna on the genome, Mol. Cell, 2013, vol. 49, no. 5, pp. 783–794.

  7. Ilik, I.A., et al., Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila, Mol. Cell, 2013, vol. 51, no. 2, pp. 156–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ernst, C. and Morton, C.C., Identification and function of long non-coding RNA, Front. Cell. Neurosci., 2013, vol. 7, p. 168.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, B., et al., Reviving the transcriptome studies: An insight into the emergence of single-molecule transcriptome sequencing, Front. Genet., 2019, vol. 10, p. 384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pertea, M., The human transcriptome: An unfinished story, Genes, 2012, vol. 3, pp. 344–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dunham, I., et al., An integrated encyclopedia of DNA elements in the human genome, 2012, Nature, vol. 489, pp. 57–74.

    Article  ADS  CAS  Google Scholar 

  12. Li, J. and Liu, C., Coding or noncoding, the converging concepts of RNAs, Front. Genet., 2019, vol. 10, p. 496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eddy, S.R., Non-coding RNA genes and the modern RNA world, Nat. Rev. Genet., 2001, vol. 2, no. 12.

  14. Erdmann, V.A., et al., The non-coding RNAs as riboregulators, Nucleic Acids Res., 2001, vol. 29, no. 1.

  15. Chan, J.J. and Tay, Y., Noncoding RNA: RNA regulatory networks in cancer, Int. J. Mol. Sci., 2018, vol. 19, no. 5, p. 1310.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fernandes, J.C.R., et al., Long non-coding RNAs in the regulation of gene expression: Physiology and disease, Noncoding RNA, 2019, vol. 5, no. 1, p. 17.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamamura, S., et al., Interaction and cross-talk between non-coding RNAs, Cell. Mol. Life Sci., 2018, vol. 75, no. 3, pp. 467–484.

    Article  CAS  PubMed  Google Scholar 

  18. Kazimierczyk, M., et al., Human long noncoding RNA interactome: Detection, characterization and function, Int. J. Mol. Sci., 2020, vol. 21, no. 3, p. 1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grillone, K., et al., Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter,” J. Exp. Clin. Cancer Res., 2020, vol. 39, p. 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frith, M.C., et al., Discrimination of non-protein-coding transcripts from protein-coding mRNA, RNA Biol., 2006, vol. 3, no. 1, pp. 40–48.

  21. Eddy, S.R., Non-coding RNA genes and the modern RNA world, Nat. Rev. Genet., 2001, vol. 2, no. 12, pp. 919–929. http://www.ncbi.nlm.nih.gov/pubmed/11733745.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, V.N., et al., Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, no. 2.

  23. Lakshmi, S.S. and Agrawal, S., piRNABank: A web resource on classified and clustered Piwi-interacting RNAs, Nucleic Acids Res., 2008, vol. 36, suppl. 1, pp. D173–D177.

  24. Stadler, P.F., et al., Evolution of vault RNAs, Mol. Biol. Evol., 2009, vol. 26, no. 9, pp. 1975–1991.

  25. Meiri, E., et al., Discovery of microRNAs and other small RNAs in solid tumors, Nucleic Acids Res., 2010, vol. 38, no. 18, pp. 6234–6246.

  26. Christov, C.P., et al., Functional requirement of noncoding Y RNAs for human chromosomal DNA replication, Mol. Cell. Biol., 2006, vol. 26, no. 18, pp. 6993–7004. https://doi.org/10.1128/mcb.01060-0612

  27. Christodoulou, F., et al., Ancient animal microRNAs and the evolution of tissue identity, Nature, 2010, vol. 463, no. 7284, p. 10841088.

    Article  Google Scholar 

  28. Kutter, C., et al., microRNA mediated regulation of stomatal development in Arabidopsis, The Plant Cell, 2007, vol. 19, no. 8, p. 24172429.

    Article  Google Scholar 

  29. Nodine, M.D. and Bartel, D.P., MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis, Genes Dev., 2010, vol. 24, no. 23, p. 26782692.

    Article  Google Scholar 

  30. Ponting, C.P., et al., Evolution and functions of long noncoding RNAs, Cell, 2009, vol. 136, no. 4, p. 629641.

    Article  Google Scholar 

  31. Condrat, C.E., et al., miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis, Cells, 2020, vol. 9, no. 2, p. 276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galvão, L., miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools, Biomed. Eng., 2021, vol. 20, p. 21.

    Google Scholar 

  33. O’Brien, J., Overview of microRNA biogenesis, mechanisms of actions, and circulation, Front. Endocrinol., 2018, vol. 9, p. 402.

    Article  Google Scholar 

  34. Hombach, S. and Kretz, M., Non-coding RNAs: Classification, biology and functioning, Adv. Exp. Med. Biol., 2016, vol. 937, pp. 3–17.

    Article  CAS  PubMed  Google Scholar 

  35. Bartel, D.P., MicroRNAs: Target recognition and regulatory functions, Cell, 2009, vol. 136, pp. 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bushati, N. and Cohen, S.M., microRNA functions, Annu. Rev. Cell Dev. Biol., 2007, vol. 23, pp. 175–205.

    Article  CAS  PubMed  Google Scholar 

  37. O’Connell, R.M., et al., microRNA regulation of inflammatory responses, Annu. Rev. Immunol., 2012, vol. 30, pp. 295–312.

    Article  PubMed  Google Scholar 

  38. Chi, S.W., et al., 2009, Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps, Nature, vol. 460, pp. 479–486.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ala, U., et al., Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 7154–7159.

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  40. Metzker, M.L., Sequencing technologies: The next generation, Nat. Rev. Genet., 2010, vol. 11, no. 1, pp. 31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  41. Hodkinson, B.P. and Grice, E.A., Next-generation sequencing: A Review of Technologies and Tools for Wound Microbiome Research, Adv. Wound Care, 2015, vol. 4, no. 1, pp. 50–58.

    Article  Google Scholar 

  42. Dunham, I., et al., An integrated encyclopedia of DNA elements in the human genome, Nature, 2012, vol. 489, pp. 57–74.

    Article  ADS  CAS  Google Scholar 

  43. Djebali, S., et al., Landscape of transcription in human cells, Nature, 2012, vol. 489, pp. 101–108.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mattick, J.S., Long noncoding RNAs in cell and developmental biology, Semin. Cell Dev. Biol., 2011, vol. 22, p. 327.

    Article  PubMed  Google Scholar 

  45. Cabili, M.N., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses, Genes Dev., 2011, vol. 25, pp. 1915–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Derrien, T., et al., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression, Genome Res., 2012, vol. 22, pp. 1775–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ulitsky, I., Evolution to the rescue: using comparative genomics to understand long non-coding RNAs, Nat. Rev. Genet., 2016, vol. 17, pp. 601–614.

    Article  CAS  PubMed  Google Scholar 

  48. Jin, J., et al., PLncDB V2.0: A comprehensive encyclopedia of plant long noncoding RNAs, Nucleic Acids Res., 2020, vol. 49, pp. 1489–1495.

    Article  Google Scholar 

  49. Jiao, F., et al., Cold induced antisense transcription of FLOWERING LOCUS C in distant grasses, Front. Plant Sci., 2019, vol. 10, p. 72.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rinn, J.L. and Chang, H.Y., Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 2012, vol. 81, pp. 145–166.

    Article  CAS  PubMed  Google Scholar 

  51. Wu, R., et al., Characters, functions and clinical perspectives of long non-coding RNAs, Mol. Genet. Genomics, 2016, vol. 291, pp. 1013–1033.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, X., et al., Long non-coding RNAs and their biological roles in plants, Genomics, Proteomics Bioinf., 2015, vol. 13, pp. 137–147.

    Article  CAS  Google Scholar 

  53. Zhao, Z., et al., Long non-coding RNAs: New players in plants, Int. J. Mol. Sci., 2022, vol. 23, no. 16, p. 9301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Szczesniak, M.W., et al., CANTATAdb 2.0: Expanding the collection of plant long noncoding RNAs, Methods Mol. Biol., 2019, vol. 1933, pp. 415–429.

    Article  CAS  PubMed  Google Scholar 

  55. Cui, J., et al., Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16conferring resistance to Phytophthora infestans by co-expressing glutaredoxin, Plant J., 2017, vol. 89, pp. 577–589.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, S., et al., Transcriptomic dynamics in soybean near-isogenic lines differing in alleles for an aphid resistance gene, following infestation by soybean aphid biotype 2, BMC Genomics, 2017, vol. 18, p. 472.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, L., et al., Genome-wide discovery and characterization of maize long non-coding RNAs, Genome Biol., 2014, vol. 15, p. R40.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang, T.Z., et al., Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing, BMC Plant Biol., 2015, vol. 15, p. 131.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shin, S.Y., et al., Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies, BMC Genomics, 2018, vol. 19, p. 532.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, J., et al., Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis, Plant Cell, 2012, vol. 24, pp. 4333–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hou, X., et al., Genome-wide analysis of long non-coding RNAs in potato and their potential role in tuber sprouting process, Int. J. Mol. Sci., 2017, vol. 19, no. 1, p. 101.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wierzbicki, A.T., et al., Long noncoding RNAs in plants, Annu. Rev. Plant Biol., 2021, vol. 72, pp. 245–271.

    Article  CAS  PubMed  Google Scholar 

  63. Hong, Y., et al., The lncRNA39896-miR166b-HDZs module affects tomato resistance to Phytophthora infestans, J. Integr. Plant Biol., 2022, vol. 64, no. 10, pp. 1979–1993.

    Article  CAS  PubMed  Google Scholar 

  64. Zou, C., et al., Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum), Sci. China: Life Sci., 2016, vol. 59, pp. 164–171.

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Ariel, F., et al., Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop, Mol. Cell, 2014, vol. 55, pp. 383–396.

    Article  CAS  PubMed  Google Scholar 

  66. Wu, H.W.W., et al., A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves, New Phytol., 2018, vol. 219, no. 4, pp. 1480–1491.

    Article  CAS  PubMed  Google Scholar 

  67. Kindgren, P., et al., Transcriptional read-through of the long noncoding RNA SVALKA governs plant cold acclimation, Nat. Commun., 2018, vol. 9, p. 4561.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Kim, D., et al., Modular function of long noncoding RNA, COLDAIR, in the vernalization response, PLoS Genet., 2017, vol. 13, p. e1006939.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Seo, J.S., et al., ELF18-INDUCED LONG NONCODING RNA 1 evicts fibrillarin from mediator subunit to enhance PATHOGENESIS-RELATED GENE 1 (PR1) expression, New Phytol., 2019, vol. 221, pp. 2067–2079.

    Article  CAS  PubMed  Google Scholar 

  70. Henriques, R., et al., The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering, New Phytol., 2017, vol. 216, pp. 854–867.

    Article  CAS  PubMed  Google Scholar 

  71. Bardou, F., et al., Long noncoding RNA modulates alternative splicing regulators in Arabidopsis, Dev. Cell, 2014, vol. 30, pp. 166–176.

    Article  CAS  PubMed  Google Scholar 

  72. Ding, J., et al., A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 2654–2659.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thomson, D.W. and Dinger, M.E., Endogenous m-icroRNA sponges: Evidence and controversy, Nat. Rev. Genet., 2016, vol. 17, pp. 272–283.

    Article  CAS  PubMed  Google Scholar 

  74. Liu, X., et al., Long non-coding RNAs and their biological roles in plants, Genomics, Proteomics Bioinf., 2015, vol. 13, pp. 137–147.

    Article  CAS  Google Scholar 

  75. Nejat, N. and Mantri, N., Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses, Crit. Rev. Biotechnol., 2017, vol. 38, no. 1, pp. 93–105.

    Article  PubMed  Google Scholar 

  76. Tian, Y., et al., PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR, Sci. Adv., 2019, vol. 5, no. 4, p. eaau7246.

  77. Swiezewski, S., et al., Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target, Nature, 2009, vol. 462, pp. 799–802.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Heo, J.B. and Sung, S., Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA, Science, 2011, vol. 331, pp. 76–79.

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Kim, D.H. and Sung, S., Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs, Dev. Cell, 2017, vol. 40, pp. 302–312.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Friml, J., et al., A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux, Science, 2004, vol. 306, no. 5697, pp. 862–865.

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Cui, J., et al., LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions, Plant J., 2019, vol. 97, no. 5, pp. 933–946.

    Article  CAS  PubMed  Google Scholar 

  82. Cui, J., Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin, Plant J., 2017, vol. 89, pp. 577–589.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, L., et al., Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton, Plant Biotechnol. J., 2018, vol. 16, pp. 1172–1185.

    Article  CAS  PubMed  Google Scholar 

  84. Li, R., et al., CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening, Plant J., 2018, vol. 94, pp. 513–524.

    Article  CAS  PubMed  Google Scholar 

  85. Bardou, F., et al., Long noncoding RNA modulates alternative splicing regulators in Arabidopsis, Dev. Cell, 2014, vol. 30, pp. 166–176.

    Article  CAS  PubMed  Google Scholar 

  86. Campalans, A., et al., Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula, Plant Cell, 2004, vol. 16, pp. 1047–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun, Y., et al., A long non-coding apple RNA, MSTRG.85814.11, acts as a transcriptional enhancer of SAUR32 and contributes to the Fe-deficiency response, Plant J., 2020, vol. 103, pp. 53–67.

    Article  CAS  PubMed  Google Scholar 

  88. Chen, L., et al., Genome-wide analysis of long non-coding RNAs affecting roots development at an early stage in the rice response to cadmium stress, BMC Genomics, 2018, vol. 19, no. 1, p. 460.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Ferreira.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P., Casquero, P.A. & Choupina, A. Regulatory Non-Coding RNAs in Crops Health and Disease. Mol. Genet. Microbiol. Virol. 38, 256–263 (2023). https://doi.org/10.3103/S0891416823040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823040080

Keywords:

Navigation