Skip to main content
Log in

Suppressive effect of agmatine on genetically programmed death of leukocytes in a diabetes model

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Effects of agmatine on different stages of apoptotic changes in leukocytes in experimentally induced diabetes mellitus (EDM) have been investigated. The number of leukocytes that showed signs of apoptosis, both early and late, was increased in diabetic animals. The content of fragmented DNA in the leukocytes of the sick animals was elevated, the apoptotic index increased, and the balance between the content of protein regulators of apoptosis (p53 and Bcl-2) was disrupted. Agmatine had a direct corrective effect on the apoptosis of leukocytes, since it normalized the levels of p53 and Bcl-2 proteins, reduced the apoptotic index, suppressed the degradation of nuclear DNA, and reduced the number of cells with early and late signs of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kyyak, Y.G. and Buchko, O., The impact of diabetes type 2 in apoptosis of immune cells in the blood of patients with unstable angina, Ukraine Drugs, 2010, no. 3 (12), pp. 51–53.

    Google Scholar 

  2. Orlova, E.A. and Komarevtsev, V.N., Definition of DNA fragmentation in cells of renal tissue, Act. Probl. Obstet. Gynecol. Clin. Immunol. Med. Genet., 2001, no. 6, pp. 206–209.

    Google Scholar 

  3. Barycheva, L.Yu., Erdni-Goryaeva, N.E., and Golubeva, M.V., Expression of apoptosis markers in children with type 1 diabetes, Med. Bull. North Caucasus, 2013, vol. 8, no. 3, pp. 86–88.

    Google Scholar 

  4. Brownlee, M., The pathobiology of diabetic complications: a unifying mechanism, Diabetes, 2005, vol. 54, no. 6, pp. 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  5. Kannan, Y., Tokunaga, M., Moriyama, M., Kinoshita, H., and Nakamura, Y., Beneficial effects of troglitazone on neutrophil dysfunction in multiple low-dose streptozotocin- induced diabetic mice, Clin. Exp. Immunol., 2004, vol. 137, no. 2, pp. 263–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nabi, A.H., Islam, L.N., Rahman, M.M., and Biswas, K.B., Polymorphonuclear neutrophil dysfunctions streptozotocin-induced type 1 diabetic rats, J. Biochem. Mol. Biol., 2005, vol. 38, no. 6, pp. 661–667.

    Article  CAS  PubMed  Google Scholar 

  7. Elmore, S., Apoptosis: a review of programmed cell death, Toxicol. Pathol., 2007, vol. 35, no. 4, pp. 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryazanceva, N.V., Novickiy, V.V., Chasovskih, N.Yu., Kaigorodova, E.V., Starikova, E.G., Starikov, U.V., Radzivil, T.T., and Krat, I.V., The role of redox-dependent signal systems in the regulation of apoptosis under oxidative stress condition, Tsitologiya, 2009, vol. 51, no. 4, pp. 329–333.

    Google Scholar 

  9. Chasovskikh, N.Yu., Role of protein kinases JNK and p38 in regulation of mononuclear leucocytes apoptosis in oxidative stress, Bull. Sib. Med., 2008, no. 3, pp. 38–43.

    Google Scholar 

  10. Chumakov, P.M., Tumor protein p53 and its universal function in a multicellular organism, Adv. Biol. Chem., 2007, vol. 47, pp. 3–52.

    CAS  Google Scholar 

  11. Chumakov, P.M., The function of the gene p53: the choice between life and death, Biochemistry, 2000, vol. 65, no. 1, pp. 34–47.

    Google Scholar 

  12. Fink, S.L. and Cookson, B.T., Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells, Infect. Immun., 2005, vol. 73, no. 4, pp. 1907–1916.

    CAS  PubMed  Google Scholar 

  13. Liu, B., Chen, Y., and Clair, D.K.St., ROS and p53: versatile partnership, Free Radic. Biol. Med., 2008, vol. 44, no. 8, pp. 1529–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sinha K., Das, J., Pal, P.B., and Sil, P.C., Oxidative stress: the mitochondria-dependent and mitochondriaindependent pathways of apoptosis, Arch. Toxicol., 2013, vol. 87, no. 7, pp. 1157–1180.

    Article  CAS  PubMed  Google Scholar 

  15. Bra, M., Kwinana, B., and Suzin, S.A., The mitochondria in programmed cell death: the death of the various mechanisms, Biochemistry, 2005, vol. 70, no. 2, pp. 284–293.

    Google Scholar 

  16. Akl, H., Vervloessem, T., Kiviluoto, S., Bittremieux, M., Parys, J.B., de Smedt, H., and Bultynck, G., A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum, Biochim. Biophys. Acta, 2014, vol. 1843, no. 10, pp. 2240–2252.

    Article  CAS  PubMed  Google Scholar 

  17. Greenberg, E.F., Lavik, A.R., and Distelhorst, C.W., Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment, Biochim. Biophys. Acta, 2014, vol. 1843, no. 10, pp. 2205–2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sudakov, N.P., Nikiforov, S.B., Konstantinov, Y., and Lepehova, S.A., The role of mitochondria in the implementation of the mechanisms of programmed cell death, Bull. East Sib. Sci. Center Acad. Med. Sci., 2007, no. 1 (53), pp. 103–107.

    Google Scholar 

  19. Fruehauf, J.P. and Meyskens, F.L., Reactive oxygen species: a breath of life or death?, Clin. Cancer Res., 2007, vol. 13, no. 3, pp. 789–794.

    Article  CAS  PubMed  Google Scholar 

  20. Siles, E., Martinez-Lara, E., Núñez, M.I., Mucoz-Gámez, J.A., Martín-Oliva, D., Valenzuela, M.T., Peinado, M.A., Ruiz de Almodóvar, J.M., and Javier Oliver, F., PARP-1-dependent 3-nitrotyrosine protein modification after DNA damage, J. Cell Biochem., 2005, vol. 96, no. 4, pp. 709–715.

    Article  CAS  PubMed  Google Scholar 

  21. Grinevich, I. and Kamyshny, A., Influence of the effect of experimental diabetes mellitus on the protein expression of apoptotic regulators Bcl-2 and p53 in the lymphoid follicles of the spleen, Morphology, 2010, vol. 4, no. 4, pp. 19–23.

    Google Scholar 

  22. Arndt, M.A., Battaglia, V., Parisi, E., Lortie, M.J., Isome, M., Baskerville, Ch., Pizzo, D.P., Ientile, R., Colombatto, S., Toninello, A., and Satriano, J., The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis, Am. J. Physiol. Cell Physiol., 2009, vol. 296, no. 6, pp. C1411–C1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haenisch, B., von Kügelgen, I., Bonisch, H., Göthert, M., Sauerbruch, T., Schepke, M., Marklein, G., Höfling, K., Schröder, D., and Molderings, G.J., Regulatory mechanisms underlying agmatine homeostasis in humans, Am. J. Physiol. Gastrointest. Liver Physiol., 2008, vol. 295, no. 5, pp. G1104–G1110.

    Article  CAS  PubMed  Google Scholar 

  24. Ferents, I.V., Lyuta, M.Ya., Brodyak, I.V., Burda, V.A., Fedorovych, A.M., and Sybirna, N.O., Effect of agmatine on the system of l-arginine/no in peripheral blood leukocytes under the condition of experimental diabetes mellitus, Med. Chem., 2011, vol. 13, no. 4, pp. 26–28.

    CAS  Google Scholar 

  25. Ferents, I.V., Brodyak, I.V., Lyuta, M.Ya., Burda, V.A., Gavrylyshyn, G.S., and Sybirna, N.O., Effect of agmatine on the blood system parameters of rats under the condition of experimental diabetes mellitus, Studia Biol., 2012, vol. 6, no. 3, pp. 65–72.

    Google Scholar 

  26. Lapovets, L.E. and Lutsyk, B.D., Handbook of Laboratory Immunology, Lviv, 2002.

    Google Scholar 

  27. Laemmly, U., Beguin, F., and Gujer-Kellenberg, G., A factor preventing the major head protein of bacteriophage T4 from random aggregation, J. Mol. Biol., 1970, vol. 47, no. 1, pp. 69–85.

    Article  Google Scholar 

  28. Berkalo, L.V., Bobovych, O.V., and Bobrova, N.A., Methods of Clinical and Experimental Research in Medicine, Poltava: Polimet, 2003.

    Google Scholar 

  29. Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C., A novel assay for apoptosis. flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin V, J.Immunol. Methods, 1995, vol. 184, no. 1, pp. 39–51.

    Article  CAS  PubMed  Google Scholar 

  30. Gow, A.J., Farkouh, C.R., Munson, D.A., Posencheg, M.A., and Ischiropoulos, H., Biological significance of nitric oxide-mediated protein modifications, Am. J. Physiol. Lung Cell Mol. Physiol., 2004, vol. 287, no. 2, pp. L262–L268.

    Article  CAS  PubMed  Google Scholar 

  31. Souza, J.M., Peluffo, G., and Radi, R., Protein tyrosine nitration—functional alteration or just a biomarker?, Free Radic. Biol. Med., 2008, vol. 45, no. 4, pp. 357–366.

    Article  CAS  PubMed  Google Scholar 

  32. Meretskyy, V.M. and Korda, M.M., Relationship between oxidative stress and neutrophil apoptosis intensity in traumatic cranial injury associated with diabetes, World Med. Biol., 2013, no. 4, pp. 75–79.

    Google Scholar 

  33. Szabo, C., Ischiropoulos, H., and Radi, R., Peroxynitrite: biochemistry, pathophysiology and development of therapeutics, Nat. Rev. Drug. Discov., 2007, vol. 6, no. 8, pp. 662–680.

    Article  CAS  Google Scholar 

  34. Arya, A.K., Pokharia, D., Mishra, M., Kumar, H., and Tripathi, K., Impact of lymphocyte apoptosis in diabetes mellitus, Asian J. Med. Sci., 2011, no. 2, pp. 1–6.

    Article  CAS  Google Scholar 

  35. Salvemini, D., Doyle, T.M., and Cuzzocrea, S., Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation, Biochem. Soc. Trans., 2006, vol. 34.

  36. Hong, S., Kim, C.Y., Lee, J.E., and Seong, G.J., Agmatine protects cultured retinal ganglion cells from tumor necrosis factor-alpha-induced apoptosis, Life Sci., 2009, vol. 84, nos. 1–2, pp. 28–32.

    Article  CAS  PubMed  Google Scholar 

  37. Hong, S., Lee, J.E., Kim, C.Y., and Seong, G.J., Agmatine protects retinal ganglion cells from hypoxiainduced apoptosis in transformed rat retinal ganglion cell line, BMC Neurosci., 2007, vol. 8, p. 81.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hong, S., Park, K., Kim, C.Y., and Seong, G.J., Agmatine inhibits hypoxia-induced TNF-alpha release from cultured retinal ganglion cells, Biocell, 2008, vol. 32, no. 2, pp. 201–205.

    CAS  PubMed  Google Scholar 

  39. Condello, S., Curro, M., Ferlazzo, N., Caccamo, D., Satriano, J., and Ientile, R., Agmatine effects on mitochondrial membrane potential and NF-?B activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells, J. Neurochem., 2011, vol. 116, no. 1, pp. 67–75.

    Article  CAS  PubMed  Google Scholar 

  40. Pegg, A.E., Mammalian polyamine metabolism and function, IUBMB Life, 2009, vol. 61, no. 9, pp. 880–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Battaglia, V., Grancara, S., Satriano, J., Saccoccio, S., Agostinelli, E., and Toninello, A., Agmatine prevents the Ca2+-dependent induction of permeability transition in rat brain mitochondria, Amino Acids, 2010, vol. 38, no. 2, pp. 431–437.

    Article  CAS  PubMed  Google Scholar 

  42. Battaglia, V., Rossi, C.A., Colombatto, S., Grillo, M.A., and Toninello, A., Different behavior of agmatine in liver mitochondria: inducer of oxidative stress or scavenger of reactive oxygen species?, Biochim. Biophys. Acta, 2007, vol. 1768, no. 5, pp. 1147–1153.

    Article  CAS  PubMed  Google Scholar 

  43. Gardini, G., Cabella, C., Cravanzola, C., Vargiu, C., Belliardo, S., Testore, G., Solinas, S.P., Toninello, A., Grillo, M.A., and Colombatto, S., Agmatine induces apoptosis in rat hepatocyte cultures, J. Hepatol., 2001, vol. 35, no. 4, pp. 482–489.

    Article  CAS  PubMed  Google Scholar 

  44. Grancara, S., Battaglia, V., Martinis, P., Viceconte, N., Agostinelli, E., Toninello, A., and Deana, R., Mitochondrial oxidative stress induced by Ca2+ and monoamines: different behaviour of liver and brain mitochondria in undergoing permeability transition, Amino Acids, 2012, vol. 42, nos. 2–3, pp. 751–759.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Sybirna.

Additional information

Original Ukrainian Text © I.V. Ferents, I.V. Brodyak, M.Ya. Lyuta, V.A. Burda, N.O. Sybirna, 2016, published in Tsitologiya i Genetika, 2016, Vol. 50, No. 4, pp. 50–61.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferents, I.V., Brodyak, I.V., Lyuta, M.Y. et al. Suppressive effect of agmatine on genetically programmed death of leukocytes in a diabetes model. Cytol. Genet. 50, 241–250 (2016). https://doi.org/10.3103/S0095452716040034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716040034

Keywords

Navigation