Skip to main content
Log in

Reduction of radiation-induced nitrative stress in leucocytes and kidney cells of rats upon administration of polyphenolic complex concentrates from red wine

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The research has shown that exposure to ionizing radiation at the dose of 30 cGy leads to the activation of NO-synthase way of nitrogen oxide synthesis, as well as to the accumulation of its stable metabolites and 3'-nitrotyrosine modified proteins in rat peripheral blood leucocytes and the renal cortical layer. NO-synthase activity was preserved at the control value through the consumption of red wine naturalpolyphenolic complex concentrates by the irradiated animals. The content of proteins modified by tyrosine nitration decreased in the early period of post-radiation exposure due to the influence of the investigated concentrate. Thus the ability of red wine natural polyphenolic complex concentrates to prevent adverse changes in L-arginine/NO system and, therefore, inhibit the development of nitrative stress induced by low doses of ionizing radiation has been proved experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mughal, S.K., Myazin, A.E., Zhavoronkov, L.P., Rubanovich, A.V., and Dubrova, Y.E., The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection, PLoS One, 2012, vol. 7, no. 7, p. e41300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Snijders, A.M., Marchetti, F., Bhatnagar, S., Duru, N., Han, J., Hu, Z., Mao, J., Gray, J.W., and Wyrobek, A.J., Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility, PLoS One, 2012, vol. 7, no. 10, p. e45394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, J., Giordano, S., and Zhang, J., Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling, Biochem. J., 2012, vol. 441, no. 2, pp. 523–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alderton, W.K., Cooper, C.E., and Knowles, R.G., Nitric oxide synthases: structure, function and inhibition, Biochem. J., 2001, vol. 357, pt. 3, pp. 593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pacher, P., Beckman, J.S., and Liaudet, L., Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 2007, vol. 87, no. 1, pp. 315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dede, S., Deger, Y., Kahraman, T., and Kiliçalp, D., Effects of X-ray radiation on oxidation products of nitric oxide in rabbits treated with antioxidant compounds, Turk. J. Biochem., 2009, vol. 34, no. 1, pp. 15–18.

    CAS  Google Scholar 

  7. Forstermann, U. and Li, H., Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling, Br. J. Pharmacol., 2011, vol. 164, no. 2, pp. 213–223.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tschudi, M.R., Mesaros, S., Luscher, T.F., and Malinski, T., Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by superoxide in hypertension, Hypertension, 1996, vol. 27, no. 1, pp. 32–35.

    Article  CAS  PubMed  Google Scholar 

  9. Swei, A., Lacy, F., DeLano, F.A., and Schmid-Shonbein, G.W., Oxidative stress in the Dahl hypertensive rats, Hypertension, 1997, vol. 30, no. 6, pp. 1628–1633.

    Article  CAS  PubMed  Google Scholar 

  10. Kerr, S., Brosman, M.J., McIntyre, M., Reid, J.L., Dominiczak, A.F., and Hamilton, C.A., Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium, Hypertension, 1999, vol. 33, no. 6, pp. 1353–1358.

    Article  CAS  PubMed  Google Scholar 

  11. Pandey, K.B. and Rizvi, S.I., Plant polyphenols as dietary antioxidants in human health and disease, Oxid. Med. Cell. Longev., 2009, vol. 2, no. 5, pp. 270–278.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van Golde, P.H., van der Westelaken, M., Bouma, B.N., and van de Wiel, A., Characteristics of piraltin, a polyphenol concentrate, produced by freeze-drying of red wine, Life Sci., 2004, vol. 74, no. 9, pp. 1159–1166.

    Article  PubMed  Google Scholar 

  13. Das, S., Santani, D.D., and Dhalla, N.S., Experimental evidence for the cardioprotective effects of red wine, Exp. Clin. Cardiol., 2007, vol. 12, no. 1, pp. 5–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zabbarova, I. and Kanai, A., Targeted delivery of radioprotective agents to mitochondria, Mol. Interv., 2008, vol. 8, no. 6, pp. 294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dohadwala, M.M. and Vita, J.A., Grapes and cardiovascular disease, J. Nutr., 2009, vol. 139, no. 9, pp. 1788S–1793s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Basli, A., Soulet, St., Chaher, N., Merillon, J.-M., Chibane, M., Monti, J.-P., and Richard, T., Wine polyphenols: potential agents in neuroprotection, Oxid. Med. Cell Longev., 2012, vol. 2012, pp. 2–14.

    Article  Google Scholar 

  17. Svobodova, A., Psotova, J., and Walterova, D., Natural phenolics in the prevention of UV-induced skin damage. A review, Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech. Repub., 2003, vol. 147, no. 2, pp. 137–145.

    Article  CAS  PubMed  Google Scholar 

  18. Londhe, J.S., Devasagayam, T.P.A., Foo, L.Y., and Ghaskadbi, S.S., Radioprotective properties of polyphenols from Phyllanthus amarus Linn, J. Radiat. Res., 2009, vol. 50, no. 4, pp. 303–309.

    Article  CAS  PubMed  Google Scholar 

  19. Greenrod, W. and Fenech, M., The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro, Mutagenesis, 2003, vol. 18, no. 2, pp. 119–126.

    Article  CAS  PubMed  Google Scholar 

  20. Barnes, S., D’Alessandro, T., Kirk, M.C., Patel, R.P., Boersma, B.J., and Darley-Usmar, V.M., The importance of in vivo metabolism of polyphenols and their biological actions, in Phytochemicals: Mechanisms of Action, Meskin, M.S., et al., Eds., Florida: CRC Press, 2004, ch. 4, pp. 51–59.

    Google Scholar 

  21. Drel, V.R. and Sybirna, N., Protective effects of polyphenolics in red wine on diabetes associated oxidative/ nitrative stress in streptozotocin-diabetic rats, Cell Biol. Int., 2010, vol. 34, no. 12, pp. 1147–1153.

    Article  CAS  PubMed  Google Scholar 

  22. Nichols, J.A. and Katiyar, S.K., Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms, Arch. Dermatol. Res., 2010, vol. 302, no. 2, pp. 71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singleton V.L., Orthofer, R., and Lamuela-Raventos, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Methods Enzymol., 1999, vol. 299, pp. 152–178.

    Article  CAS  Google Scholar 

  24. Miranda, K.M., Espey, M.G., and Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite, Nitric Oxide, 2001, vol. 5, no. 1, pp. 62–71.

    Article  CAS  PubMed  Google Scholar 

  25. Dawson, J. and Knowles, R.G., A microtiter-plate assay of human NOS isoforms, Methods Mol. Biol., 1998, vol. 100, pp. 237–242.

    CAS  PubMed  Google Scholar 

  26. Lowri, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    Google Scholar 

  27. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  28. Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 9, pp. 4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Molla, M. and Panes, J., Radiation-induced intestinal inflammation, World J. Gastroenterol., 2007, vol. 13, no. 22, pp. 3043–3046.

    PubMed  PubMed Central  Google Scholar 

  30. McFarland, H.I., Puig, M., Grajkowska, L.T., Tsuji, K., Lee, J.P., Mason, K.P., Verthelyi, D., and Rosenberg, A.S., Regulatory T cells in γ irradiation-induced immune suppression, PLoS One, 2012, vol. 7, no. 6, p. e39092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gisone, P., Dubner, D., Perez, M.D.R., Michelin, S., and Puntarulo, S., The role of nitric oxide in the radiation-induced effects in the developing brain, In Vivo, 2004, vol. 18, no. 3, pp. 281–292.

    CAS  PubMed  Google Scholar 

  32. Jelkmann, W., Regulation of erythropoietin production, J. Physiol., 2011, vol. 589, pt 6, pp. 1251–1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, S.Z., Nonlinear dose-response relationship in the immune system following exposure to ionizing radiation: mechanisms and implications, Nonlinearity Biol. Toxicol. Med., 2003, vol. 1, no. 1, pp. 71–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prasad, K.N., Cole, W.C., and Hasse, G.M., Health risks of low dose ionizing radiation in humans: a review, Exp. Biol. Med. (Maywood), 2004, vol. 229, no. 5, pp. 378–382.

    CAS  Google Scholar 

  35. Matsumoto, H., Takahashi, A., and Ohnishi, T., Nitric oxide radicals choreograph a radioadaptive response, Cancer Res., 2007, vol. 67, no. 18, pp. 8574–8579.

    Article  CAS  PubMed  Google Scholar 

  36. Roberts, R.A., Laskin, D.L., Smith, C.V., Robertson, F.M., Allen, E.M.G., Doorn, J.A., and Slikker, W., Nitrative and oxidative stress in toxicology and disease, Toxicol. Sci., 2009, vol. 112, no. 1, pp. 4–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wink, D.A., Hines, H.B., Cheng, R.Y.S., Switzer, C.H., Flores-Santana, W., Vitek, M.P., Ridnour, L.A., and Colton, C.A., Nitric oxide and redox mechanisms in the immune response, J. Leukoc. Biol., 2011, vol. 89, no. 6, pp. 873–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beckman, J.S., Beckman, J.W., Chen, J., Marshall, P.A., and Freeman, B.A., Apparent hydroxyl radical production by peroxinitrite: implications for endotherlial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, no. 4, pp. 1620–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, C.I., Liu, X., and Zweier, J.L., Regulation of xanthine oxidase by nitric oxide and peroxynitrite, J. Biol. Chem., 2000, vol. 275, no. 13, pp. 9369–9376.

    Article  CAS  PubMed  Google Scholar 

  40. Sutherland, B.A., Rahman, R.M., Appleton, I., Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration, J. Nutr. Biochem., 2006, vol. 17, no. 5, pp. 291–306.

    Article  CAS  PubMed  Google Scholar 

  41. Wallace, T.C., Anthocyanins in cardiovascular disease, Adv. Nutr., 2011, vol. 2, no. 1, pp. 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Knowles, R.G. and Moncada, S., Nitric oxide synthases in mammals, Biochem. J., 1994, vol. 298, pt. 2, pp. 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Foster, M.W., Hess, D.T., and Stamler, J.S, Protein S-nitrosylation in health and disease: a current perspective, Trends Mol. Med., 2009, vol. 15, no. 9, pp. 391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, C., Parrott, A.M., Fu, C., Liu, T., Marino, S.M., Gladyshev, V.N., Jain, M.R., Baykal, A.T., Li, Q., Oka, S., Sadoshima, J., Beuve, A., Simmons, W.J., and Li, H., Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies, Antioxid. Redox Signal., 2011, vol. 15, no. 9, pp. 2565–2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anand, P. and Stamler, J.S., Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease, J. Mol. Med. (Berl.), 2012, vol. 90, no. 3, pp. 233–244.

    Article  CAS  Google Scholar 

  46. Hernansanz-Agustin, P., Izquierdo-Alvarez, A., Garcia-Ortiz, A., Ibiza, S., Serrador, J.M., and Martinez-Ruiz, A., Nitrosothiols in the immune system: signaling and protection, Antioxid. Redox. Signal., 2013, vol. 18, no. 3, pp. 288–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, C., Kavalier, A., Lukyanov, E., and Gross, S.S., S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation: a common paradigm for gasotransmitter signaling by H2S and NO, Methods, 2013, vol. 62, no. 2, pp. 177–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D’Alessandro, T., Prasain, J., Benton, M.R., Botting, N., Moore, R., Darley-Usmar, V., Patel, R., and Barnes, S., Polyphenols, inflammatory response, and cancer prevention: chlorination of isoflavones by human neutrophils, J. Nutr., 2003, vol. 133, no. 11, Suppl. 1, pp. 3773S–3777S.

    PubMed  Google Scholar 

  49. Kamisaki, Y., Wada, K., Bian, K., Balabanli, B., Davis, K., Martin, E., Behbod, F., Lee, Y.-C., and Murad, F., An activity in rat tissues that modifies nitrotyrosine-containing proteins, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 20, pp. 11584–11589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koeck, T., Fu, X., Hazen, S.L., Crabb, J.W., Stuehr, D.J., and Aulak, K.S., Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria, J. Biol. Chem., 2004, vol. 279, no. 26, pp. 27257–27262.

    Article  CAS  PubMed  Google Scholar 

  51. Monteiro, H.P., Arai, R.J., and Travassos, L.R., Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling, Antioxid. Redox Signal., 2008, vol. 10, no. 5, pp. 843–889.

    Article  CAS  PubMed  Google Scholar 

  52. Kelly, G.S., Quercetin. Monograph, Altern. Med. Rev., 2011, vol. 16, no. 2, pp. 172–194.

    PubMed  Google Scholar 

  53. Leopoldini, M., Russo, N., and Toscano, M., The molecular basis of working mechanism of natural polyphenolic antioxidants, Food Chem., 2011, vol. 125, no. 2, pp. 288–306.

    Article  CAS  Google Scholar 

  54. Ishimoto, H., Tai, A., Yoshimura, M., Amakura, Y., Yoshida, T., Hatano, T., and Ito, H., Antioxidative properties of functional polyphenols and their metabolites assessed by an ORAC assay, Biosci. Biotechnol. Biochem., 2012, vol. 76, no, 2, pp. 395–399.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sabadashka.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabadashka, M., Sybirna, N. Reduction of radiation-induced nitrative stress in leucocytes and kidney cells of rats upon administration of polyphenolic complex concentrates from red wine. Cytol. Genet. 50, 187–195 (2016). https://doi.org/10.3103/S0095452716030099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716030099

Keywords

Navigation