Skip to main content
Log in

Study of the Integration of Physical Methods in Neural Network Solution of the Inverse Problem of Exploration Geophysics with Variable Physical Properties of the Medium

  • MACHINE LEARNING IN NATURAL SCIENCES
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Exploration geophysics requires solving specific inverse problems — reconstructing the spatial distribution of the medium properties in the thickness of the earth from the geophysical fields measured on its surface. We consider inverse problems of gravimetry, magnetometry, magnetotelluric sounding, and their integration, which means simultaneous use of various geophysical fields to reconstruct the desired distribution. Integration requires the determined parameters for all the methods to be the same. This may be achieved by the spatial statement of the problem, in which the task is to determine the boundaries of geophysical objects. In our previous studies, we considered the parameterization scheme where the inverse problem was to determine the lower boundary of several geological layers. Each layer was characterized by variable values of the depth of the lower boundary along the section, and by fixed values of density, magnetization, and resistivity, both for the layer and over the entire dataset. It was demonstrated that the integration of geophysical methods provides significantly better results than the use of each of the methods separately. The present study considers an extended and more realistic model of data—a parameterization scheme with variable properties of the medium, both along each layer and over the dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. L. A. Gallardo, S. L. Fontes, M. A. Meju, et al., Geophysics 77, B237 (2012). https://doi.org/10.1190/geo2011-0394.1

    Article  Google Scholar 

  2. H. Cai and M. S. Zhdanov, IEEE Geosci. Remote Sens. Lett. 14, 1228 (2017). https://doi.org/10.1109/LGRS.2017.2703845

    Article  ADS  Google Scholar 

  3. ФA. Akca, T. Günther, M. MüllerтAPPetke, et al., Geophys. Prospect. 62, 364 (2014). https://doi.org/10.1111/1365-2478.12082

    Article  ADS  Google Scholar 

  4. E. Roux, M. Moorkamp, A. G. Jones, et al. Geophys. Res. Lett. 38, L05304 (2011). https://doi.org/10.1029/2010GL046358

  5. A. Yadav, K. Yadav, and A. Sircar, Energy Geosci. 2, 189 (2021). https://doi.org/10.1016/j.engeos.2021.01.001

    Article  Google Scholar 

  6. I. Isaev et al., in Problems of Geocosmos-2020, Ed. by A. Kosterov, N. Bobrov, E. Gordeev, E. Kulakov, E. Lyskova, and I. Mironova, Springer Proceedings in Earth and Environmental Sciences (Springer, Cham, 2022), pp. 77–87. https://doi.org/10.1007/978-3-030-91467-7_7

    Book  Google Scholar 

  7. I. Isaev, I. Obornev, E. Obornev, et al. Proc. Comput. Sci. 213, 777 (2022). https://doi.org/10.1016/j.procs.2022.11.134

    Article  Google Scholar 

  8. Y. Hu, et al., in First Int. Meeting for Applied Geoscience and Energy, Denver, Colo., 2021 (Society of Exploration Geophysicists, 2021), pp. 1721–1725. https://doi.org/10.1190/segam2021-3583667.1

  9. H. Zhou, et al. in Second Int. Meeting for Applied Geoscience and Energy, Houston, Texas, 2022 (Society of Exploration Geophysicists, 2022), pp. 1900-1904. https://doi.org/10.1190/image2022-3751528.1

  10. V. Spichak and I. Popova, Geophys. J. Int. 142, 15 (2000). https://doi.org/10.1046/j.1365-246x.2000.00065.x

    Article  ADS  Google Scholar 

  11. V. Spichak, K. Fukuoka, T. Kobayashi, et al., J. Appl. Geophys. 49, 75 (2002). https://doi.org/10.1016/S0926-9851(01)00100-8

    Article  ADS  Google Scholar 

  12. M. Montahaei and B. Oskooi, Acta Geophys. 62, 12 (2014). https://doi.org/10.2478/s11600-013-0164-7

    Article  ADS  Google Scholar 

  13. I. Isaev, E. Obornev, I. Obornev, et al., Stud. Comput. Intell. 799, 176 (2019). https://doi.org/10.1007/978-3-030-01328-8_19

    Article  Google Scholar 

  14. M. Raissi, P. Perdikaris, and G. E. Karniadakis, J. Comput. Phys. 378, 686 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

    Article  MathSciNet  ADS  Google Scholar 

  15. W. Liu, H. Wang, Z. Xi, R. Zhang, and X. Huang, Remote Sens. 14, 3218 (2022). https://doi.org/10.3390/rs14133218

    Article  ADS  Google Scholar 

  16. R. Guo, T. Huang, M. Li, et al. IEEE Signal Process. Mag. 40 (2), 18 (2023). https://doi.org/10.1109/MSP.2022.3198805

    Article  Google Scholar 

  17. I. Isaev, E. Obornev, I. Obornev, et al., in Brain-Inspired Cognitive Architectures for Artificial Intelligence: BICA*AI 2020, A. V. Samsonovich et al., Advances in Intelligent Systems and Computing, Vol. 1310 (Springer, Cham, 2021), pp. 115–126. https://doi.org/10.1007/978-3-030-65596-9_15

Download references

Funding

This study has been conducted at the expense of the Russian Science Foundation grant no. 19-11-00333, https://rscf.ru/en/project/19-11-00333/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Isaev or S. A. Dolenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, I.V., Obornev, I.E., Obornev, E.A. et al. Study of the Integration of Physical Methods in Neural Network Solution of the Inverse Problem of Exploration Geophysics with Variable Physical Properties of the Medium. Moscow Univ. Phys. 78 (Suppl 1), S122–S127 (2023). https://doi.org/10.3103/S0027134923070123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923070123

Keywords:

Navigation