Skip to main content
Log in

A nearly complete system of average crystallographic ionic radii and its use for determining ionization potentials

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

Available systems of empirical (crystallographic) ionic radii are compared. All these systems turn out to be compatible if the O2− radius is taken to be 0.140 nm. The choice of the oxygen ionic radius is dictated by the equality of the metal ion-oxygen ion distances in oxide crystals and the metal ion-oxygen atom distances in crystal hydrates and concentrated aqueous solutions. In all systems of empirical ionic radii under consideration, the uncertainty of determination of ionic radii is 0.002–0.005 nm. A new method of determination of the ionic radii of elements in unusual valence states is suggested: from the empirical dependence of the electron density at an atom in a given valence state on the atomic radius, a two-parameter equation relating the ionic radii of Period 4–7 elements in two valence states is derived, which allows one to calculate the ionic radius that cannot be determined by crystallography because of the lack of stable compounds in this valence state. Ionic radii are calculated for all Period 4–7 elements in all valence states. They constitute a nearly complete system of ionic radii. There is a linear relationship between the atomic nucleus charge and the inverse ionic radius. It is shown that the square root of the ionization potential is a linear function of the inverse ionic radius. The as yet experimentally unknown ionization potentials of 78 ions of different elements are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sollas, A.A., Ionno-atomnye radiusy i ikh znachenie dlya geokhimii i khimii (Ionic and Atomic Radii and Their Significance for Geochemistry and Chemistry), Leningrad, 1969, p. 33.

  2. Bragg, W.L., Philos. Mag., 1920, vol. 40, p. 169.

    CAS  Google Scholar 

  3. Lande, F., Z. Phys., 1920, vol. 1, p. 191.

    Article  CAS  Google Scholar 

  4. Wasastjerna, J., Soc. Sci. Fenn. Comm. Phys.-Math., 1923, vol. 38, p. 22.

    Google Scholar 

  5. Goldschmidt, V.M., Trans. Faraday Soc., 1929, vol. 25, p. 255.

    Article  Google Scholar 

  6. Pauling, L., J. Am. Chem. Soc., 1927, vol. 49, p. 765.

    Article  CAS  Google Scholar 

  7. Pauling, L., The Nature of the Chemical Bond, Ithaca: Cornell Univ. Press, 1939. Translated under the titles Priroda khimicheskoi svyazi, Moscow, 1947.

    Google Scholar 

  8. Zachariasen, W.H., Acta Crystallogr., 1952, vol. 5, p. 660.

    Article  CAS  Google Scholar 

  9. Bokii, G.B., Kristallokhimiya (Crystal Chemistry), Moscow, 1971.

  10. Lebedev, V.I., Ionno-atomnye radiusy i ikh znachenie dlya geokhimii i khimii (Ionic and Atomic Radii and Their Significance for Geochemistry and Chemistry), Leningrad, 1969.

  11. Batsanov, S.S., Zh. Strukt. Khim., 1962, vol. 3, p. 616.

    CAS  Google Scholar 

  12. Batsanov, S.S., Dokl. Akad. Nauk SSSR, 1978, vol. 238, p. 95.

    CAS  Google Scholar 

  13. Shannon, R.D. and Prewitt, C.T., Acta Crystallogr., Sect. B: Struct. Sci., 1969, vol. 25, p. 1427; 1970, vol. 26, p. 1046.

    Google Scholar 

  14. Shannon, R.D., Acta Crystallogr., Sect. A: Found. Crystallogr., 1976, vol. 32, p. 751.

    Article  Google Scholar 

  15. Zefirov, Yu.V. and Zorkii, P.M., Usp. Khim., 1989, vol. 58, p. 713.

    CAS  Google Scholar 

  16. Zefirov, Yu.V. and Zorkii, P.M., Russ. Chem. Rev., 1995, vol. 64, p. 415.

    Article  Google Scholar 

  17. Ryabykh, S.M. and Bugaenko, L.T., Izv. Akad. Nauk LatvSSR, Ser. Fiz. Tekh. Nauk, 1990, no. 2, p. 77.

  18. Bugaenko, L.T. and Ryabykh, S.M., Vestn. Mosk. Univ., Ser. 2, Khim., 1993, vol. 34, p. 315.

    CAS  Google Scholar 

  19. Bugaenko, L.T. and Ryabykh, S.M., Vestn. Mosk. Univ., Ser. 2, Khim., 1999, vol. 40, p. 277.

    CAS  Google Scholar 

  20. Yagoda, M., Mineralogiya. 7. Sbornik (Mineralogy 7, Collected Works) Prague, 1965.

  21. Zhuravlev, Yu.N., Doctoral (Phys.-math.) Dissertation, Kemerovo, 2003.

  22. Kapustinski, A.F., Quart. Rev., 1956, vol.10, p. 283.

    Article  Google Scholar 

  23. Batsanov, S.S., Zh. Neorg. Khim., 1991, vol. 36, p. 3015.

    CAS  Google Scholar 

  24. Bragg, W.L., Philos. Mag. J. Sci., 1926, vol. 11, p. 258.

    Google Scholar 

  25. Drakin, S.I., Shpakova, S.O., and Del Pino, Kh., Fizika molekul (Physic of Molecules), Moscow, 1976.

  26. Markus, Y., Chem. Rev., 1988, vol. 88, p. 1475.

    Article  Google Scholar 

  27. Wyckoff, G., The Structure of Crystals, New York, 1924.

  28. Wyckoff, G., Crystal Structures, New York, 1948.

  29. Drakin, S.I., Zh. Strukt. Khim., 1963, vol. 4, p. 514.

    CAS  Google Scholar 

  30. Whittaker, E.J. and Muntus, P., Geochim. Cosmochim. Acta, 1970, vol. 34, p. 945.

    Article  CAS  Google Scholar 

  31. Handbook of Chemistry and Physics, 44th ed., Cleveland, Ohio: The Chemical Rubber Publishing Co., 1963, p. 3507; Allen, C.W., Astrophysical Quantities, 1973. Translated under the title Astrofizicheskie velichiny, Moscow, 1974.

  32. Pua, P., Khimiya tverdogo tela (The Chemistry of Solid State), Moscow, 1972.

  33. Vainshtein, B.K., Fridkin, V.M., and Indenbom, V.L., Sovremennaya kristallografiya (Modern Crystallography), Moscow, 1979.

  34. Zachariasen, W.H., cited in Kittel, C., Introduction to Solid State Physics, New York: Wiley, 1960; Zashariasen, W.H., Crystal Chemistry of the 5f Elements, in The Actinide Elements, Seaborg, G.T. and Katz, J.J., Eds., McGraw-Hill, 1954.

    Google Scholar 

  35. Peterson, J.R. and Canningham, B.B., Inorg. Nucl. Chem. Lett., 1967, vol. 3, p. 327; 1978, vol. 30, p. 1775.

    Article  CAS  Google Scholar 

  36. Keller, C., The Chemistry of the Transuranium Elements, New York, 1971.

  37. Templeton, D.H. and Daubin, C.H., J. Am. Chem. Soc., 1954, vol. 76, p. 5237.

    Article  CAS  Google Scholar 

  38. Bandurkin, G.A., Dzhurinskii, B.F., and Tananaev, I.P., Osobennosti kristallokhimii soedinenii redkozemel’nykh elementov (Specific Features of Crystal Chemistry of Rare Earth Elements), Moscow, 1984.

  39. Handbook on the Physic and Chemistry of Rare Earths, Gschneider, K. A. and Eyring, L., Eds., Amsterdam: Elsevier, 1979. Translated under the title Fizika i khimiya redkozemel’nykh elementov, Moscow, 1982.

    Google Scholar 

  40. Knop, O. and Carlow, J.S., Can. J. Chem., 1974, vol. 52, p. 2175.

    Article  CAS  Google Scholar 

  41. David, F., J. Less-Com. Metals, 1986, vol. 121, p. 27.

    Article  CAS  Google Scholar 

  42. Jenkins, H.D.B. and Thakur, K.P., J. Chem. Educ., 1979, vol. 56, p. 57.

    Article  Google Scholar 

  43. Stokar, K., Helv. Chim. Acta, 1950, vol. 33, p. 1409.

    Article  Google Scholar 

  44. Lakatos, B., Bohus, J., and Medgyesi, Gy., Acta Chim. Hung., 1959, vol. 20, p. 1; vol. 21, p. 292.

    CAS  Google Scholar 

  45. Marakushev, A.A., Zapiski Vsesoyuz. miner. obshchestva (Proceedings of the All-Union Mineralogical Society), Moscow, 1980.

  46. Spiro, N.S., Trudy Instituta Galurgii, 1949, vol. 21, p. 262.

    Google Scholar 

  47. Ahrens, L.H., Geochim. Cosmochim. Acta, 1952, vol., 2, p. 155; Nature, 1954, vol. 174, p. 644.

    Article  CAS  Google Scholar 

  48. Yatsimirskii, K.B., Zh. Org. Khim., 1953, vol. 23, p. 180.

    CAS  Google Scholar 

  49. Gattow, G., Z. Anorg. Chem., 1958, vol. 294, p. 205.

    Article  CAS  Google Scholar 

  50. Genov, L., Zh. Obshch. Khim., 1959, vol. 29, p. 689.

    CAS  Google Scholar 

  51. Johnson, O., Chem. Scr., 1975, vol. 7, p. 5.

    CAS  Google Scholar 

  52. Popov, A.I., Kopelev, N.S., and Kisilev, Yu.M., Dokl. Akad. Nauk SSSR, 1988, vol. 301, p. 623.

    Google Scholar 

  53. Fizicheskie svoistva elementov (Physical Properties of Elements) Samoilov, G.V, Ed., part 1, Moscow, 1976.

  54. Spitsyn, V.I. and Martynenko, L.I., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow, 1991.

  55. Tablitsy fizicheskikh velichin (Tables of Physical Quantities), Kikoin, I.K., Ed., Moscow, 1976.

  56. Fizicheskie velichiny (Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z, Eds., Moscow, 1991.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Bugaenko.

Additional information

Original Russian Text © L.T. Bugaenko, S.M. Ryabykh, A.L. Bugaenko, 2008, published in Vestnik Moskovskogo Universiteta. Khimiya, 2008, No. 6, pp. 363–384.

About this article

Cite this article

Bugaenko, L.T., Ryabykh, S.M. & Bugaenko, A.L. A nearly complete system of average crystallographic ionic radii and its use for determining ionization potentials. Moscow Univ. Chem. Bull. 63, 303–317 (2008). https://doi.org/10.3103/S0027131408060011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131408060011

Keywords

Navigation