Skip to main content
Log in

A Study of Thermo-Mechanical Interactions in the Rotating Micropolar Elastic Solid with Two Temperatures Using Memory-Dependent Derivative

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this work, the memory response of a rotating micropolar elastic media under the thermo-mechanical effect has been investigated. The Helmholtz potential’s along with the normal mode analysis, is utilized for finding the solution of the required problem. Additionally, the Matlab software is used for numerical computations. The behaviour of the field quantities is studied for a fixed kernel \(\tilde {K}(t - r)\) and for distinct values of time, t. Finally, the material properties of magnesium are taken under consideration to demonstrate the components of displacement, force stress, couple stress, thermodynamic temperature, as well as the conductive temperature distribution graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A.C. Eringen, “Linear theory of micropolar elasticity,” J. Math. Mech. 15 (6), 909–923 (1966). https://doi.org/10.1512/iumj.1966.15.15060

    Article  MathSciNet  MATH  Google Scholar 

  2. H.W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids 15 (5), 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  ADS  MATH  Google Scholar 

  3. A.E. Green and K.A. Lindsay, “Thermoelasticity,” J. Elasticity 2 (1), 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  MATH  Google Scholar 

  4. A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Sci. 432 (1885), 171–194 (1991). https://doi.org/10.1098/rspa.1991.0012

  5. A. E. Green and P. M. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stress. 15 (2), 253–264 (1992). https://doi.org/10.1080/01495739208946136

    Article  ADS  MathSciNet  Google Scholar 

  6. A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity 31 (3), 189–208 (1993). https://doi.org/10.1007/BF00044969

    Article  MathSciNet  MATH  Google Scholar 

  7. A. E. Green and P. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stress. 15 (2), 253–264 (1992). https://doi.org/10.1080/01495739208946136

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Oldham and J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, 1st ed. (Elsevier, New York, 1974).

    MATH  Google Scholar 

  9. H.H. Sherief and A.M. Abd El-Latief, “A one-dimensional fractional order thermoelastic problem for a spherical cavity,” Math. Mech. Solids 20 (5), 512–521 (2015). https://doi.org/10.1177/1081286513505585

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Lata and I. Kaur, “Thermomechanical interactions in transversely isotropic magneto-thermoelastic medium with fractional order generalized heat transfer and hall current,” Arab J. Basic Appl. Sci. 27 (1), 13–26 (2020). https://doi.org/10.1080/25765299.2019.1703494

    Article  Google Scholar 

  11. P. Lata and I. Kaur, “Fractional order theory of thermal stresses in a two dimensional transversely isotropic magneto thermoelastic material,” J. Theor. Appl. Mech. Sofia 50, 222–237 (2020).

    MathSciNet  Google Scholar 

  12. I. Kaur, P. Lata, and K. Singh, “Effect of Hall current in transversely isotropic magneto-thermoelastic rotating medium with fractional-order generalized heat transfer due to ramp - type heat,” Indian J. Phys. 95 (6), 1165–1174 (2021). https://doi.org/10.1007/s12648-020-01718-2

    Article  ADS  Google Scholar 

  13. Y. N. Radaev, “Factorization of the main hyperbolic differential operator of the micropolar elasticity theory,” Mech. Solids 55 (6), 776–783 (2020). https://doi.org/10.3103/S0025654420060126

    Article  ADS  Google Scholar 

  14. R. K. Sahrawat, “Wave propagation in couple stress micropolar viscoelastic generalized thermoelastic solid,” Mech. Solids 56 (6), 1047–1065 (2021). https://doi.org/10.3103/S0025654421060157

    Article  Google Scholar 

  15. M. Di Paola, F. Marino, and M. Zingales, “A generalized model of elastic foundation based on long-range interactions: Integral and fractional model,” Int. J. Solids Struct. 46 (17), 3124–3137 (2009). https://doi.org/10.1016/j.ijsolstr.2009.03.024

    Article  MATH  Google Scholar 

  16. M. A. Ezzat, “Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer,” Phys. B: Cond. Matter 405 (19), 4188–4194 (2010). https://doi.org/10.1016/j.physb.2010.07.009

    Article  ADS  Google Scholar 

  17. M. A. Ezzat, “Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer,” Phys. B: Cond. Matter 406 (1), 30–35 (2011). https://doi.org/10.1016/j.physb.2010.10.005

    Article  ADS  Google Scholar 

  18. M. A. Ezzat and A. S. El Karamany, “Theory of fractional order in electro-thermoelasticity,” Eur. J. Mech. A/Solids 30 (4), 491–500 (2011). https://doi.org/10.1016/j.euromechsol.2011.02.004

    Article  ADS  MATH  Google Scholar 

  19. M. A. Ezzat and A. S. El Karamany, “Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures,” ZAMP 62 (5), 937–952 (2011). https://doi.org/10.1007/s00033-011-0126-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M.A. Ezzat, A.S. El-Karamany, and S.M. Ezzat, “Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer,” Nuclear Eng. Des. 252, 267–277 (2011). https://doi.org/10.1016/j.nucengdes.2012.06.012

    Article  MATH  Google Scholar 

  21. M. A. Ezzat, A. S. El-Karamany, A. A. El-Bary, and M.A. Fayik, “Fractional ultrafast laser-induced magneto-thermoelastic behavior in perfect conducting metal films,” J. Electromagn. Waves Appl. 28 (1), 64–82 (2014). https://doi.org/10.1080/09205071.2013.855616

    Article  ADS  Google Scholar 

  22. M. A. Ezzat and A. A. El-Bary, “Two-temperature theory of magneto-thermo-viscoelasticity with fractional derivative and integral orders heat transfer,” J. Electromagn. Waves Appl. 28 (16), 1985–2004 (2014). https://doi.org/10.1080/09205071.2014.953639

    Article  ADS  Google Scholar 

  23. M. Islam and M. Kanoria, “One-dimensional problem of a fractional order two-temperature generalized thermo-piezoelasticity,” Math. Mech. Solids 19 (6), 672–693 (2014). https://doi.org/10.1177/1081286513482605

    Article  MathSciNet  MATH  Google Scholar 

  24. J. L. Wang and H. F. Li, “Surpassing the fractional derivative: Concept of the memory-dependent derivative,” Comput. Math. Appl. 62 (3), 1562–1567 (2011). https://doi.org/10.1016/j.camwa.2011.04.028

    Article  MathSciNet  MATH  Google Scholar 

  25. M. A. Ezzat and A. A. El-Bary, “Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature,” J. Mech. Sci. Technol. 29 (10), 4273–4279 (2015). https://doi.org/10.1007/s12206-015-0924-1

    Article  Google Scholar 

  26. M. A. Ezzat, A. S. El Karamany, and A. A. El-Bary, “Electro-thermoelasticity theory with memory-dependent derivative heat transfer,” Int. J. Eng. Sci. 99, 22–38 (2016). https://doi.org/10.1016/j.ijengsci.2015.10.011

    Article  MathSciNet  MATH  Google Scholar 

  27. M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Generalized thermoelasticity with memory-dependent derivatives involving two temperatures,” Mech. Advanc. Mater. Struct. 23 (5), 545–553 (2016). https://doi.org/10.1080/15376494.2015.1007189

    Article  Google Scholar 

  28. M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, “Modeling of memory-dependent derivative in generalized thermoelasticity,” Eur. Phys. J. Plus 131 (10), 1–12 (2016). https://doi.org/10.1140/epjp/i2016-16372-3

    Article  Google Scholar 

  29. M. I. Othman and S. Mondal, “Memory-dependent derivative effect on wave propagation of micropolar thermoelastic medium under pulsed laser heating with three theories,” Int. J. Num. Meth. Heat Fluid Flow 30 (3), 1025–1046 (2019). https://doi.org/10.1108/HFF-05-2019-0402

    Article  Google Scholar 

  30. S. Biswas, “Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field,” Mech. Based Des. Struct. Machin. 47 (3), 302–318 (2019). https://doi.org/10.1080/15397734.2018.1548968

    Article  Google Scholar 

  31. S. M. Said, “A study on the frame of a memory-dependent derivative in a micropolar thermoelastic medium under the effect of the variable thermal conductivity,” Mech. Based Des. Struct. Machin. 1–17 (2020). https://doi.org/10.1080/15397734.2020.1851255

  32. B. Singh and S. Pal, “Magneto-thermoelastic interaction with memory response due to laser pulse under Green-Naghdi theory in an orthotropic medium,” Mech. Based Des. Struct. Machin. 50 (9), 1–18 (2020). https://doi.org/10.1080/15397734.2020.1798780

    Article  Google Scholar 

  33. Y. Li and T. He, “The transient response of a functionally graded half-space heated by a laser pulse based on the generalized thermoelasticity with memory-dependent derivative,” Mech. Advanc. Mater. Struct. 28 (22), 2299–2309 (2021). https://doi.org/10.1080/15376494.2020.1731888

    Article  Google Scholar 

  34. V. Kumar, R. Nazir, and K. Lotfy, “Interactions of magneto-micropolar thermoelastic rotating medium with memory-dependent derivative,” Indian J. Phys. 96, 3809–3816 (2022). https://doi.org/10.1007/s12648-022-02322-2

    Article  ADS  Google Scholar 

  35. M.I. Othman, W.M. Hasona, and E.M. Abd-Elaziz, “Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model,” Canad. J. Phys. 92 (2), 149–158 (2014). https://doi.org/10.1139/cjp-2013-0398

    Article  ADS  Google Scholar 

  36. S. M. Abo-Dahab, A. M. Abd-Alla, S. M. Ahmed, and M. M. Rashid, “Effect of magnetic field and three-phase-lag in a rotating micropolar thermo-viscoelastic half-space homogeneous isotropic material,” Waves Rand. Complex Media 31 (3), 1–24 (2019). https://doi.org/10.1080/17455030.2019.1596330

    Article  MATH  Google Scholar 

  37. R. Kumar, “Effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources,” Chaos Solitons Fract. 41 (4), 1619–1633 (2009). https://doi.org/10.1016/j.chaos.2008.07.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Varun Kumar or Rafiya Nazir.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Nazir, R. A Study of Thermo-Mechanical Interactions in the Rotating Micropolar Elastic Solid with Two Temperatures Using Memory-Dependent Derivative. Mech. Solids 58, 325–337 (2023). https://doi.org/10.3103/S0025654422601227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422601227

Keywords:

Navigation