Skip to main content
Log in

Comparative Study of Free Vibration for Carbon Nanotube-Reinforced Composite Plates Based on Various Higher-Order Plate Theories

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A comparative investigation is made on the free vibration behavior of a carbon nanotube-reinforced composite (CNTRC) plate based on various higher-order shear deformation plate theories (HSDTs). For the CNTRC plates, uniformly distributed (Type UD) and functionally graded (Type Λ) reinforcements are considered where the material properties of CNTRC plates are assumed to be graded in the thickness direction and estimated through the rule of mixture. A set of unified nonlinear dynamics governing equations of the CNTRC rectangular plate considering different shear deformation function forms are established based on von Kármán-type geometric nonlinearity. Then by applying Galerkin discretization method, the nonlinear governing equations of a simply-supported CNTRC plate are simplified into a set of ordinary differential equations involving independent time variable. Finally by using the harmonic balance method, the influences of the parameters such as nanotube volume fraction, the plate width-to-thickness ratio and the plate aspect ratio on the natural frequencies and nonlinear free vibration behaviors of CNTRC plates with various higher-order plate theories are analyzed comparatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. Wuite and S Adali, “Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis,” Compos. Struct. 71, 388–396 (2005). https://doi.org/10.1016/j.compstruct.2005.09.011

    Article  Google Scholar 

  2. T. Vodenitcharova and L. C. Zhang, “Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube,” Int. J. Solids Struct. 43, 3006–3024 (2006). https://doi.org/10.1016/j.ijsolstr.2005.05.014

    Article  MATH  Google Scholar 

  3. F. Lin and Y. Xiang, “Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories,” J. Appl. Math. Model. 38, 3741–3754 (2014). https://doi.org/10.1016/j.apm.2014.02.008

    Article  MathSciNet  MATH  Google Scholar 

  4. L. L. Ke and J. Yang, and Sritawat Kitipornchai, “Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams,” Compos. Struct. 92, 676–683(2010). https://doi.org/10.1016/j.compstruct.2009.09.024

    Article  Google Scholar 

  5. R. Ansari, M. F. Shojaei, V. Mohammadi, et al., “Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams,” Compos. Struct. 113, 316–327 (2014). https://doi.org/10.1016/j.compstruct.2014.03.015

    Article  Google Scholar 

  6. M. H. Yas and M. Heshmati, “Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load,” J. Appl. Math. Model. 36, 1371–1394 (2012). https://doi.org/10.1016/j.apm.2011.08.037

    Article  MathSciNet  MATH  Google Scholar 

  7. H. S. Shen and Y. Xiang, “Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments,” J. Eng. Struct. 56, 698–708 (2013). https://doi.org/10.1016/j.engstruct.2013.06.002

    Article  Google Scholar 

  8. N. Wattanasakulpong and V. Ungbhakorn, “Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation,” Comput. Mater. Sci. 71, 201–208 (2013). https://doi.org/10.1016/j.commatsci.2013.01.028

    Article  Google Scholar 

  9. M. M. Heydari, A. H. Bidgoli, H. R. Golshani, et al., “A Davoodi. Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric Temperature- dependent plate resting on orthotropic elastomeric medium using GDQM,” J. Non-Lin. Dyn. 79, 1425–1441 (2015). https://doi.org/10.1007/s11071-014-1751-0

    Article  Google Scholar 

  10. R. Ansari, E. Hasrati, M. F. Shojaei, et al., “Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy,” J. Phys. E: Low- Dimensional Syst. Nanostruc. 69, 294–305 (2015). https://doi.org/10.1016/j.physe.2015.01.011

    Article  Google Scholar 

  11. P. Malekzadeh, M. Dehbozorgi, and S. M. Monajjemzadeh. “Vibration of functionally graded carbon nanotube-reinforced composite plates under a moving load,” Sci. Eng. Compos. Mater. 22, 37–55 (2015). https://doi.org/10.1515/secm-2013-0142

    Article  Google Scholar 

  12. Z. X. Lei, L. W. Zhang, and K. M. Liew. “Buckling of FG-CNT reinforced composite thick skew plates resting on Pasternak foundations based on an element-free approach,” Appl. Maths. Comput. 266, 773–791 (2015). https://doi.org/10.1016/j.compositesb.2015.01.033

    Article  MathSciNet  MATH  Google Scholar 

  13. L. W. Zhang, Z. X. Lei, and K. M. Liew, “Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates,” Compos Struct. 122, 172–183 (2015). https://doi.org/10.1016/j.compstruct.2014.11.070

    Article  Google Scholar 

  14. P. Phung-Van, M. Abdel-Wahab, K. M. Liew, et al. “Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory,” Compos. Struct. 123, 137–149 (2015). https://doi.org/10.1016/j.compstruct.2014.12.021

    Article  Google Scholar 

  15. K. Mehar, S. K. Panda, A. Dehengia, et al., “Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment,” J. Sandwich Struct. Mater. 18, 151–173(2015). https://doi.org/10.1177/10996362156133

    Article  Google Scholar 

  16. N. Wattanasakulpong and A. Chaikittiratana, “Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation,” J. Appl. Math. Model. 9, 5459–5472 (2015). https://doi.org/10.1016/j.apm.2014.12.058

    Article  MathSciNet  MATH  Google Scholar 

  17. H. S. Shen, “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments,” Compos. Struct. 1, 9–19 (2009). https://doi.org/10.1016/j.compstruct.2009.04.026

    Article  Google Scholar 

  18. Z. X. Wang and H. S. Shen, “Nonlinear vibration of nanotube-reinforced composite plates in thermal environments,” Comput. Mater. Sci. 2319–2330 (2011). https://doi.org/10.1016/j.commatsci.2011.03.005

  19. H. S. Shen and Z. H. Zhu, “Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments,” Comput. Mater. Continua 18, 155–182 (2010). https://doi.org/10.3970/cmc.2010.018.155

    Article  Google Scholar 

  20. H. S. Shen and C. L. Zhang, “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates,” Mater. Des. 31, 3403–3411 (2010). https://doi.org/10.1016/j.matdes.2010.01.048

    Article  Google Scholar 

  21. H. S. Shen, “Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: axially-loaded shells,” Compos. Struct. 93, 2096–2108 (2011). https://doi.org/10.1016/j.compstruct.2011.02.011

    Article  Google Scholar 

  22. H. S. Shen, “Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: pressure-loaded shells,” Compos. Struct. 93, 2496–2503 (2011). https://doi.org/10.1016/j.compstruct.2011.04.005

    Article  Google Scholar 

  23. H. S. Shen, “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells,” Compos. Part B: Eng. 43, 1030–1038 (2012). https://doi.org/10.1016/j.compositesb.2011.10.004

    Article  Google Scholar 

  24. H. S. Shen and Y. Xiang, “Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments,” Comput. Methods Appl. Mech. Eng. 213, 196–205 (2012). https://doi.org/10.1016/j.cma.2011.11.025

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. N. Reddy, “A simple higher-order theory for laminated composite plates,” J. Appl. Mech. 51, 745-752 (1984). https://doi.org/10.1115/1.3167719

    Article  ADS  MATH  Google Scholar 

  26. J. Shi, “A simple third-order shear deformation theory of plates,” Int. J. Solids Struct. 4, 4399–4417 (2007). https://doi.org/10.1016/j.ijsolstr.2006.11.031

    Article  MATH  Google Scholar 

  27. M. Touratier, “An efficient standard theory of plates,” Int. J. Eng. Sci. 9, 901–916 (1991). https://doi.org/10.1016/0020-7225(91)90165-Y

    Article  MATH  Google Scholar 

  28. M. Karama, K. S. Afaq, and S. Mistou, “Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity,” Int. J. Solids Struct. 40, 1525–1546 (2003). https://doi.org/10.1016/S0020-7683(02)00647-9

    Article  MATH  Google Scholar 

  29. S. A. Ambartsumian, “On theory of bending plates,” Izv. Otd. Tech. Nauk AN SSSR 5, 69–77 (1958).

    MathSciNet  Google Scholar 

  30. G. D. Seidel and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mech Mater. 38, 884–907 (2006). https://doi.org/10.1016/j.mechmat.2005.06.029

    Article  Google Scholar 

  31. A. M. K. Esawi and M. M. Farag, “Carbon nanotube reinforced composites: potential and current challenges,” Mater Des. 8, 2394–2401 (2007). https://doi.org/10.1016/j.matdes.2006.09.022

    Article  Google Scholar 

  32. T. Kuppusamy and J. N. Reddy, “A three-dimensional nonlinear analysis of cross-ply rectangular composite plates,” Comput. Struct. 18, 263–272 (1984). https://doi.org/10.1016/0045-7949(84)90124-X

    Article  MATH  Google Scholar 

  33. G. Singh, G. Venkateswara Rao, and N. G. R. Iyengar, “Geometrically nonlinear flexural response characteristics of shear deformable unsymmetrically laminated plates,” Comput. Struct. 53, 69–81 (1994). https://doi.org/10.1016/0045-7949(94)90131-7

    Article  ADS  MATH  Google Scholar 

  34. A. W. Leissa, “The free vibration of rectangular plates,” J. Sound Vib. 31, 257–293 (1973). https://doi.org/10.1016/S0022-460X(73)80371-2

    Article  ADS  MATH  Google Scholar 

  35. C. W. Lim, K. M. Liew, and S. Kitipornchai, “Numerical aspects of free vibration of thick plates part I: Formulation and verification,” Comput. Meth. Appl. Mech. Eng. 156, 15–29 (1998). https://doi.org/10.1016/S0045-7825(97)00197-7

    Article  MATH  Google Scholar 

  36. S. Srinivas, C. V. Joga Rao, and A. K. Rao, “An exact analysis for vibraton of simply-supported homogeneous and laminated thick rectangular plates,” J. Sound Vib. 12 (2), 187–199 (1970). https://doi.org/10.1016/0022-460X(70)90089-1

    Article  ADS  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors gratefully acknowledge the support of the Scientific Research Fund of Hunan Provincial Education Department (no. 16A003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deliang Chen, Lu Zhou or Xiongfeng Peng.

Appendices

APPENDIX A

$$\begin{gathered} {{L}_{{11}}}\left( {} \right) = {{A}_{{11}}}{{\left( {} \right)}_{{,xx}}} + {{A}_{{66}}}{{\left( {} \right)}_{{,yy}}}, \\ {{L}_{{12}}}\left( {} \right) = \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right){{\left( {} \right)}_{{,xy}}}, \\ {{L}_{{13}}}\left( {} \right) = \left( {{{E}_{{11}}} - {{B}_{{11}}}} \right){{\left( {} \right)}_{{,xxx}}} + \left( {{{E}_{{12}}} + 2{{E}_{{66}}} - {{B}_{{12}}} - 2{{B}_{{66}}}} \right){{\left( {} \right)}_{{,xyy}}}, \\ {{J}_{{13}}}\left( {} \right) = {{A}_{{11}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xx}}} + {{A}_{{66}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,yy}}} + \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right){{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xy}}}, \\ {{L}_{{14}}}\left( {} \right) = {{E}_{{11}}}{{\left( {} \right)}_{{,xx}}} + {{E}_{{66}}}{{\left( {} \right)}_{{,yy}}}, \\ {{L}_{{15}}}\left( {} \right) = \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right){{\left( {} \right)}_{{,xy}}}, \\ \end{gathered} $$
(A.1)
$$\begin{gathered} {{L}_{{22}}}\left( {} \right) = {{A}_{{66}}}{{\left( {} \right)}_{{,xx}}} + {{A}_{{22}}}{{\left( {} \right)}_{{,yy}}}, \\ {{L}_{{23}}}\left( {} \right) = \left( {{{E}_{{22}}} - {{B}_{{22}}}} \right){{\left( {} \right)}_{{,yyy}}} + \left( {{{E}_{{12}}} + 2{{E}_{{66}}} - {{B}_{{12}}} - 2{{B}_{{66}}}} \right){{\left( {} \right)}_{{,xxy}}}, \\ {{J}_{{23}}}\left( {} \right) = {{A}_{{22}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,yy}}} + {{A}_{{66}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xx}}} + \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right){{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xy}}}, \\ {{L}_{{25}}}\left( {} \right) = {{E}_{{66}}}{{\left( {} \right)}_{{,xx}}} + {{E}_{{22}}}{{\left( {} \right)}_{{,yy}}}, \\ \end{gathered} $$
(A.2)
$$\begin{gathered} {{L}_{{33}}}\left( {} \right) = {{A}_{{55}}}{{\left( {} \right)}_{{,xx}}} + {{A}_{{44}}}{{\left( {} \right)}_{{,yy}}} + \left( {2{{F}_{{11}}} - {{D}_{{11}}} - {{H}_{{11}}}} \right){{\left( {} \right)}_{{,xxxx}}} + \left( {2{{F}_{{22}}} - {{D}_{{22}}} - {{H}_{{22}}}} \right){{\left( {} \right)}_{{,yyyy}}} \\ + \,\left( {4{{F}_{{12}}} + 8{{F}_{{66}}} - 2{{D}_{{12}}} - 4{{D}_{{66}}} - 2{{H}_{{12}}} - 4{{H}_{{66}}}} \right){{\left( {} \right)}_{{,xxyy}}}, \\ {{L}_{{34}}}\left( {} \right) = {{A}_{{55}}}{{\left( {} \right)}_{{,x}}} + \left( {{{F}_{{11}}} - {{H}_{{11}}}} \right){{\left( {} \right)}_{{,xxx}}} + \left( {{{F}_{{12}}} + 2{{F}_{{66}}} - {{H}_{{12}}} - 2{{H}_{{66}}}} \right){{\left( {} \right)}_{{,xyy}}}, \\ {{L}_{{35}}}\left( {} \right) = {{A}_{{44}}}{{\left( {} \right)}_{{,y}}} + \left( {{{F}_{{22}}} - {{H}_{{22}}}} \right){{\left( {} \right)}_{{,yyy}}} + \left( {{{F}_{{12}}} + 2{{F}_{{66}}} - {{H}_{{12}}} - 2{{H}_{{66}}}} \right){{\left( {} \right)}_{{,xxy}}}, \\ {{J}_{{31}}}\left( {} \right) = {{A}_{{11}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xx}}} + {{A}_{{12}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,yy}}} + 2{{A}_{{66}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xy}}} + {{A}_{{11}}}{{\left( {} \right)}_{{,xx}}}{{\left( {} \right)}_{{,x}}} \\ + \,{{A}_{{66}}}{{\left( {} \right)}_{{,yy}}}{{\left( {} \right)}_{{,x}}} + \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right){{\left( {} \right)}_{{,xy}}}{{\left( {} \right)}_{{,y}}}, \\ {{J}_{{32}}}\left( {} \right) = {{A}_{{12}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xx}}} + {{A}_{{22}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,yy}}} + 2{{A}_{{66}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xy}}} + {{A}_{{66}}}{{\left( {} \right)}_{{,xx}}}{{\left( {} \right)}_{{,y}}} \\ + \,{{A}_{{22}}}{{\left( {} \right)}_{{,yy}}}{{\left( {} \right)}_{{,y}}} + \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right){{\left( {} \right)}_{{,xy}}}{{\left( {} \right)}_{{,x}}}, \\ J_{{33}}^{1}\left( {} \right) = \left( {2{{B}_{{66}}} + 2{{E}_{{12}}} - 2{{B}_{{12}}} - 2{{E}_{{66}}}} \right){{\left( {} \right)}_{{,xx}}}{{\left( {} \right)}_{{,yy}}} + \left( {2{{B}_{{12}}} + 2{{E}_{{66}}} - 2{{E}_{{12}}} - 2{{B}_{{66}}}} \right)\left( {} \right)_{{,xy}}^{2}, \\ J_{{33}}^{2}\left( {} \right) = \frac{3}{2}{{A}_{{11}}}\left( {} \right)_{{,x}}^{2}{{\left( {} \right)}_{{,xx}}} + \frac{3}{2}{{A}_{{22}}}\left( {} \right)_{{,y}}^{2}{{\left( {} \right)}_{{,yy}}} + \left( {\frac{1}{2}{{A}_{{12}}} + {{A}_{{66}}}} \right)\left( {} \right)_{{,x}}^{2}{{\left( {} \right)}_{{,yy}}}, \\ + \left( {\frac{1}{2}{{A}_{{12}}} + {{A}_{{66}}}} \right)\left( {} \right)_{{,y}}^{2}{{\left( {} \right)}_{{,xx}}} + \left( {2{{A}_{{12}}} + 4{{A}_{{66}}}} \right){{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xy}}}, \\ \end{gathered} $$
$$\begin{gathered} {{J}_{{34}}}\left( {} \right) = {{E}_{{11}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xx}}} + {{E}_{{12}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,yy}}} + 2{{E}_{{66}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xy}}} + {{E}_{{11}}}{{\left( {} \right)}_{{,xx}}}{{\left( {} \right)}_{{,x}}} \\ \, + {{E}_{{66}}}{{\left( {} \right)}_{{,yy}}}{{\left( {} \right)}_{{,x}}} + \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right){{\left( {} \right)}_{{,xy}}}{{\left( {} \right)}_{{,y}}}, \\ {{J}_{{35}}}\left( {} \right) = {{E}_{{12}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xx}}} + {{E}_{{22}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,yy}}} + 2{{E}_{{66}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xy}}} + {{E}_{{66}}}{{\left( {} \right)}_{{,xx}}}{{\left( {} \right)}_{{,y}}} \\ \, + {{E}_{{22}}}{{\left( {} \right)}_{{,yy}}}{{\left( {} \right)}_{{,y}}} + \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right){{\left( {} \right)}_{{,xy}}}{{\left( {} \right)}_{{,x}}}, \\ \end{gathered} $$
(A.3)
$$\begin{gathered} {{L}_{{43}}}\left( {} \right) = - {{L}_{{34}}}\left( {} \right), \\ {{J}_{{43}}}\left( {} \right) = {{E}_{{11}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xx}}} + {{E}_{{66}}}{{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,yy}}} + \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right){{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xy}}}, \\ {{L}_{{44}}}\left( {} \right) = - {{A}_{{55}}}\left( {} \right) + {{H}_{{11}}}{{\left( {} \right)}_{{,xx}}} + {{H}_{{66}}}{{\left( {} \right)}_{{,yy}}}, \\ {{L}_{{45}}}\left( {} \right) = \left( {{{H}_{{12}}} + {{H}_{{66}}}} \right){{\left( {} \right)}_{{,xy}}}, \\ \end{gathered} $$
(A.4)
$$\begin{gathered} {{L}_{{53}}}\left( {} \right) = - {{L}_{{35}}}\left( {} \right) \\ {{J}_{{53}}}\left( {} \right) = {{E}_{{22}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,yy}}} + {{E}_{{66}}}{{\left( {} \right)}_{{,y}}}{{\left( {} \right)}_{{,xx}}} + ,\left( {{{E}_{{12}}} + {{E}_{{66}}}} \right){{\left( {} \right)}_{{,x}}}{{\left( {} \right)}_{{,xy}}}, \\ {{L}_{{55}}}\left( {} \right) = - {{A}_{{44}}}\left( {} \right) + {{H}_{{66}}}{{\left( {} \right)}_{{,xx}}} + {{H}_{{22}}}{{\left( - \right)}_{{,yy}}}, \\ \end{gathered} $$
(A.5)

APPENDIX B

$$\begin{gathered} {{a}_{{11}}} = {{I}_{0}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{a}_{{12}}} = {{I}_{3}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{a}_{{13}}} = \left( {{{I}_{3}} - {{I}_{1}}} \right)\frac{{bm\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{a}_{{14}}} = {{A}_{{11}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{A}_{{66}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{a}_{{15}}} = \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{a}_{{16}}} = \left( {{{E}_{{11}}} - {{B}_{{11}}}} \right)\frac{{b{{m}^{3}}{{\pi }^{3}}}}{{4{{a}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{E}_{{12}}} - {{B}_{{12}}} + 2{{E}_{{66}}} - 2{{B}_{{66}}}} \right)\frac{{m{{n}^{2}}{{\pi }^{3}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{a}_{{17}}} = {{A}_{{11}}}\frac{{k{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{3}}}}p_{2}^{{rkm}}q_{6}^{{nls}} + {{A}_{{66}}}\frac{{k{{s}^{2}}{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{rkm}}q_{6}^{{nls}} - \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{kls{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{rkm}}q_{2}^{{nls}}, \\ {{a}_{{18}}} = {{E}_{{11}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{E}_{{66}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{a}_{{19}}} = \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}. \\ {{b}_{{11}}} = {{I}_{0}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{b}_{{12}}} = {{I}_{3}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{b}_{{13}}} = \left( {{{I}_{3}} - {{I}_{1}}} \right)\frac{{an\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ \end{gathered} $$
(B.1)
$$\begin{gathered} {{b}_{{14}}} = \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{b}_{{15}}} = {{A}_{{66}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{A}_{{22}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{b}_{{16}}} = \left( {{{E}_{{22}}} - {{B}_{{22}}}} \right)\frac{{a{{n}^{3}}{{\pi }^{3}}}}{{4{{b}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{E}_{{12}}} - {{B}_{{12}}} + 2{{E}_{{66}}} - 2{{B}_{{66}}}} \right)\frac{{{{m}^{2}}n{{\pi }^{3}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ \end{gathered} $$
$$\begin{gathered} {{b}_{{17}}} = {{A}_{{22}}}\frac{{l{{s}^{2}}{{\pi }^{3}}}}{{{{b}^{3}}}}p_{6}^{{mkr}}q_{2}^{{sln}} + {{A}_{{66}}}\frac{{l{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{6}^{{mkr}}q_{2}^{{sln}} - \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{klr{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{2}^{{mkr}}q_{2}^{{sln}}, \\ {{b}_{{18}}} = \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{b}_{{19}}} = {{E}_{{66}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{E}_{{22}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}. \\ \end{gathered} $$
(B.2)
$$\begin{gathered} {{c}_{{11}}} = - {{I}_{0}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}} - \left( {{{I}_{2}} - 2{{I}_{4}} + {{I}_{5}}} \right)\left( {\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}} + \frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}} \right){{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{c}_{{12}}} = \left( {{{I}_{1}} - {{I}_{3}}} \right)\frac{{bm\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{c}_{{13}}} = \left( {{{I}_{1}} - {{I}_{3}}} \right)\frac{{an\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{c}_{{14}}} = \left( {{{I}_{4}} - {{I}_{5}}} \right)\frac{{bm\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{c}_{{15}}} = \left( {{{I}_{4}} - {{I}_{5}}} \right)\frac{{an\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{c}_{{16}}} = \left( {{{B}_{{11}}} - {{E}_{{11}}}} \right)\frac{{b{{m}^{3}}{{\pi }^{3}}}}{{4{{a}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{B}_{{12}}} + 2{{B}_{{66}}} - {{E}_{{12}}} - 2{{E}_{{66}}}} \right)\frac{{m{{n}^{2}}{{\pi }^{3}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{c}_{{17}}} = \left( {{{B}_{{22}}} - {{E}_{{22}}}} \right)\frac{{a{{n}^{3}}{{\pi }^{3}}}}{{4{{b}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{B}_{{12}}} + 2{{B}_{{66}}} - {{E}_{{12}}} - 2{{E}_{{66}}}} \right)\frac{{{{m}^{2}}n{{\pi }^{3}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{c}_{{18}}} = - {{A}_{{55}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} - {{A}_{{44}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {2{{F}_{{11}}} - {{D}_{{11}}} - {{H}_{{11}}}} \right)\frac{{b{{m}^{4}}{{\pi }^{4}}}}{{4{{a}^{3}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} \\ + \left( {2{{F}_{{12}}} + 4{{F}_{{66}}} - {{D}_{{12}}} - 2{{D}_{{66}}} - {{H}_{{12}}} - 2{{H}_{{66}}}} \right)\frac{{{{m}^{2}}{{n}^{2}}{{\pi }^{4}}}}{{2ab}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {2{{F}_{{22}}} - {{D}_{{22}}} - {{H}_{{22}}}} \right)\frac{{a{{n}^{4}}{{\pi }^{4}}}}{{4{{b}^{3}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ \end{gathered} $$
$$\begin{gathered} {{c}_{{19}}} = - {{A}_{{55}}}\frac{{bm\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{F}_{{11}}} - {{H}_{{11}}}} \right)\frac{{b{{m}^{3}}{{\pi }^{3}}}}{{4{{a}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{F}_{{12}}} + 2{{F}_{{66}}} - {{H}_{{12}}} - 2{{H}_{{66}}}} \right)\frac{{m{{n}^{2}}{{\pi }^{3}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{c}_{{20}}} = - {{A}_{{44}}}\frac{{an\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{F}_{{22}}} - {{H}_{{22}}}} \right)\frac{{a{{n}^{3}}{{\pi }^{3}}}}{{4{{b}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{F}_{{12}}} + 2{{F}_{{66}}} - {{H}_{{12}}} - 2{{H}_{{66}}}} \right)\frac{{{{m}^{2}}n{{\pi }^{3}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ \end{gathered} $$
$$\begin{gathered} c_{{21}}^{1} = \left( {2{{B}_{{66}}} + 2{{E}_{{12}}} - 2{{B}_{{12}}} - 2{{E}_{{66}}}} \right)\frac{{{{k}^{2}}{{s}^{2}}{{\pi }^{4}}}}{{{{a}^{2}}{{b}^{2}}}}p_{6}^{{mkr}}q_{6}^{{nls}}, \\ c_{{21}}^{2} = \left( {2{{B}_{{12}}} + 2{{E}_{{66}}} - 2{{E}_{{12}}} - 2{{B}_{{66}}}} \right)\frac{{{{k}^{2}}{{l}^{2}}{{\pi }^{4}}}}{{{{a}^{2}}{{b}^{2}}}}p_{2}^{{mk}}q_{2}^{{nl}}, \\ c_{{22}}^{1} = - {{A}_{{11}}}\frac{{3{{k}^{2}}{{r}^{2}}{{\pi }^{4}}}}{{2{{a}^{4}}}}p_{4}^{{mkr}}q_{8}^{{nls}} - {{A}_{{22}}}\frac{{3{{l}^{2}}{{s}^{2}}{{\pi }^{4}}}}{{2{{b}^{4}}}}p_{8}^{{mkr}}q_{4}^{{nls}} - \left( {\frac{1}{2}{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{{{l}^{2}}{{r}^{2}}{{\pi }^{4}}}}{{{{a}^{2}}{{b}^{2}}}}p_{4}^{{mkr}}q_{8}^{{nls}} \\ - \left( {\frac{1}{2}{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{{{k}^{2}}{{s}^{2}}{{\pi }^{4}}}}{{{{a}^{2}}{{b}^{2}}}}p_{8}^{{mkr}}q_{4}^{{nls}},\quad c_{{22}}^{2} = \left( {2{{A}_{{12}}} + 4{{A}_{{66}}}} \right)\frac{{ksij{{\pi }^{4}}}}{{{{a}^{2}}{{b}^{2}}}}p_{5}^{{mikr}}q_{5}^{{njls}}, \\ {{c}_{{23}}} = {{A}_{{11}}}\frac{{k{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{3}}}}p_{6}^{{mkr}}q_{6}^{{nls}} + {{A}_{{12}}}\frac{{k{{s}^{2}}{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{6}^{{mkr}}q_{6}^{{nls}} + 2{{A}_{{66}}}\frac{{lrs{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{mkr}}q_{2}^{{nls}} \\ - {{A}_{{11}}}\frac{{{{k}^{2}}r{{\pi }^{3}}}}{{{{a}^{3}}}}p_{2}^{{mkr}}q_{6}^{{nls}} - {{A}_{{66}}}\frac{{{{l}^{2}}r{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{mkr}}q_{6}^{{nls}} - \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{kls{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{6}^{{mkr}}q_{2}^{{nls}}, \\ \end{gathered} $$
$$\begin{gathered} {{c}_{{24}}} = {{A}_{{12}}}\frac{{l{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{6}^{{mkr}}q_{6}^{{nls}} + {{A}_{{22}}}\frac{{l{{s}^{2}}{{\pi }^{3}}}}{{{{b}^{3}}}}p_{6}^{{mkr}}q_{6}^{{nls}} + 2{{A}_{{66}}}\frac{{krs{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{2}^{{mkr}}q_{2}^{{nls}} - {{A}_{{66}}}\frac{{{{k}^{2}}s{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{6}^{{mkr}}q_{2}^{{nls}} \\ \, - {{A}_{{22}}}\frac{{{{l}^{2}}s{{\pi }^{3}}}}{{{{b}^{3}}}}p_{6}^{{mkr}}q_{2}^{{nls}} - \left( {{{A}_{{12}}} + {{A}_{{66}}}} \right)\frac{{klr{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{2}^{{mkr}}q_{6}^{{nls}}, \\ \end{gathered} $$
$$\begin{gathered} {{c}_{{25}}} = {{E}_{{11}}}\frac{{k{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{3}}}}p_{6}^{{mkr}}q_{6}^{{nls}} + {{E}_{{12}}}\frac{{k{{s}^{2}}{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{6}^{{mkr}}q_{6}^{{nls}} + 2{{E}_{{66}}}\frac{{lrs{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{mkr}}q_{2}^{{nls}} \\ \, - {{E}_{{11}}}\frac{{{{k}^{2}}r{{\pi }^{3}}}}{{{{a}^{3}}}}p_{2}^{{mkr}}q_{6}^{{nls}} - {{E}_{{66}}}\frac{{{{l}^{2}}r{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{mkr}}q_{6}^{{nls}} - \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{kls{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{6}^{{mkr}}q_{2}^{{nls}}, \\ {{c}_{{26}}} = {{E}_{{12}}}\frac{{l{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{6}^{{mkr}}q_{6}^{{nls}} + {{E}_{{22}}}\frac{{l{{s}^{2}}{{\pi }^{3}}}}{{{{b}^{3}}}}p_{6}^{{mkr}}q_{6}^{{nls}} + 2{{E}_{{66}}}\frac{{krs{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{2}^{{mkr}}q_{2}^{{nls}} \\ \, - {{E}_{{66}}}\frac{{{{k}^{2}}s{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{6}^{{mkr}}q_{2}^{{nls}} - {{E}_{{22}}}\frac{{{{l}^{2}}s{{\pi }^{3}}}}{{{{b}^{3}}}}p_{6}^{{mkr}}q_{2}^{{nls}} - \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{klr{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{2}^{{mkr}}q_{6}^{{nls}}, \\ {{c}_{{27}}} = \frac{{qab}}{{mn{{\pi }^{2}}}}\left( {1 - \cos n\pi - \cos m\pi + \cos n\pi \cos m\pi } \right). \\ \end{gathered} $$
(B.3)
$$\begin{gathered} {{d}_{{11}}} = {{I}_{3}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{d}_{{12}}} = {{I}_{5}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{d}_{{13}}} = \left( {{{I}_{5}} - {{I}_{4}}} \right)\frac{{bm\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{d}_{{14}}} = {{E}_{{11}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{E}_{{66}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{d}_{{15}}} = \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{d}_{{16}}} = {{A}_{{55}}}\frac{{bm\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{H}_{{11}}} - {{F}_{{11}}}} \right)\frac{{b{{m}^{3}}{{\pi }^{3}}}}{{4{{a}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} \\ + \left( {{{H}_{{12}}} + 2{{H}_{{66}}} - {{F}_{{12}}} - 2{{F}_{{66}}}} \right)\frac{{m{{n}^{2}}{{\pi }^{3}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{d}_{{17}}} = {{E}_{{11}}}\frac{{k{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{3}}}}p_{2}^{{rkm}}q_{6}^{{nls}} + {{E}_{{66}}}\frac{{k{{s}^{2}}{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{rkm}}q_{6}^{{nls}} - \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{kls{{\pi }^{3}}}}{{a{{b}^{2}}}}p_{2}^{{rkm}}q_{2}^{{nls}}, \\ {{d}_{{18}}} = {{A}_{{55}}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{H}_{{11}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{H}_{{66}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{d}_{{19}}} = \left( {{{H}_{{12}}} + {{H}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}. \\ {{e}_{{11}}} = {{I}_{3}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{e}_{{12}}} = {{I}_{5}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{e}_{{13}}} = \left( {{{I}_{5}} - {{I}_{4}}} \right)\frac{{an\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{e}_{{14}}} = \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}},\quad {{e}_{{15}}} = {{E}_{{66}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{E}_{{22}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{e}_{{16}}} = {{A}_{{44}}}\frac{{an\pi }}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + \left( {{{H}_{{22}}} - {{F}_{{22}}}} \right)\frac{{a{{n}^{3}}{{\pi }^{3}}}}{{4{{b}^{2}}}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} \\ \end{gathered} $$
(B.4)
$$\begin{gathered} + \left( {{{H}_{{12}}} + 2{{H}_{{66}}} - {{F}_{{12}}} - 2{{F}_{{66}}}} \right)\frac{{{{m}^{2}}n{{\pi }^{3}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ {{e}_{{17}}} = {{E}_{{22}}}\frac{{l{{s}^{2}}{{\pi }^{3}}}}{{{{b}^{3}}}}p_{6}^{{mkr}}q_{2}^{{sln}} + {{E}_{{66}}}\frac{{l{{r}^{2}}{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{6}^{{mkr}}q_{2}^{{sln}} - \left( {{{E}_{{12}}} + {{E}_{{66}}}} \right)\frac{{klr{{\pi }^{3}}}}{{{{a}^{2}}b}}p_{2}^{{mkr}}q_{2}^{{sln}}, \\ {{e}_{{18}}} = \left( {{{H}_{{12}}} + {{H}_{{66}}}} \right)\frac{{mn{{\pi }^{2}}}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}}, \\ \end{gathered} $$
$${{e}_{{19}}} = {{A}_{{44}}}\frac{{ab}}{4}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{H}_{{66}}}\frac{{b{{m}^{2}}{{\pi }^{2}}}}{{4a}}{{\delta }_{{mk}}}{{\delta }_{{nl}}} + {{H}_{{22}}}\frac{{a{{n}^{2}}{{\pi }^{2}}}}{{4b}}{{\delta }_{{mk}}}{{\delta }_{{nl}}},$$
(B.5)

where

$$\begin{gathered} p_{1}^{{mk}} = \int\limits_0^a {\cos \frac{{k\pi x}}{a}} \sin \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{1}^{{nl}} = \int\limits_0^b {\cos \frac{{l\pi y}}{b}} \sin \frac{{n\pi y}}{b}{\text{dy;}} \\ p_{2}^{{rkm}} = \int\limits_0^a {\cos \frac{{k\pi x}}{a}} \sin \frac{{r\pi x}}{a}\cos \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{2}^{{sln}} = \int\limits_0^b {\cos \frac{{l\pi y}}{b}} \sin \frac{{s\pi y}}{b}\cos \frac{{n\pi y}}{b}{\text{dy;}} \\ \end{gathered} $$
$$\begin{gathered} p_{2}^{{mk{\text{r}}}} = \int_0^a {\cos \frac{{k\pi x}}{a}\cos \frac{{r\pi x}}{a}} \sin \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{2}^{{nls}} = \int\limits_0^b {\cos \frac{{l\pi y}}{b}\cos \frac{{s\pi y}}{b}} \sin \frac{{n\pi y}}{b}{\text{dy;}} \\ p_{3}^{{mk{\text{r}}}} = \int\limits_0^a {\cos \frac{{k\pi x}}{a}\sin \frac{{r\pi x}}{a}} \sin \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{3}^{{nls}} = \int\limits_0^b {\cos \frac{{l\pi y}}{b}\sin \frac{{s\pi y}}{b}} \sin \frac{{n\pi y}}{b}{\text{dy;}} \\ p_{4}^{{mk{\text{r}}}} = \int\limits_0^a {\sin \frac{{k\pi x}}{a}{{{\cos }}^{2}}\frac{{r\pi x}}{a}} \sin \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{4}^{{nls}} = \int\limits_0^b {\sin \frac{{l\pi y}}{b}} {{\cos }^{2}}\frac{{s\pi y}}{b}\sin \frac{{n\pi y}}{b}{\text{dy;}} \\ \end{gathered} $$
$$\begin{gathered} p_{5}^{{mik{\text{r}}}} = \int\limits_0^a {\cos \frac{{k\pi x}}{a}\sin \frac{{r\pi x}}{a}\cos \frac{{i\pi x}}{a}} \sin \frac{{m\pi x}}{a}{\text{dx;}} \\ q_{5}^{{njls}} = \int\limits_0^b {\sin \frac{{l\pi y}}{b}\cos \frac{{s\pi y}}{b}\cos \frac{{j\pi y}}{b}} \sin \frac{{n\pi x}}{b}{\text{dy;}} \\ \end{gathered} $$
(B.6)
$$\begin{gathered} p_{6}^{{mk{\text{r}}}} = \int\limits_0^a {\sin \frac{{k\pi x}}{a}\sin \frac{{r\pi x}}{a}} \sin \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{6}^{{nls}} = \int\limits_0^b {\sin \frac{{l\pi y}}{b}\sin \frac{{s\pi y}}{b}} \sin \frac{{n\pi y}}{b}{\text{dy;}} \\ p_{7}^{{mk{\text{r}}}} = \int\limits_0^a {\sin \frac{{k\pi x}}{a}\cos \frac{{r\pi x}}{a}} \sin \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{7}^{{nls}} = \int\limits_0^b {\sin \frac{{l\pi y}}{b}\cos \frac{{s\pi y}}{b}} \sin \frac{{n\pi y}}{b}{\text{dy;}} \\ p_{8}^{{mk{\text{r}}}} = \int\limits_0^a {\sin \frac{{k\pi x}}{a}} {{\sin }^{2}}\frac{{r\pi x}}{a}\sin \frac{{m\pi x}}{a}{\text{dx;}}\quad q_{8}^{{nls}} = \int\limits_0^b {\sin \frac{{l\pi y}}{b}{{{\sin }}^{2}}\frac{{s\pi y}}{b}} \sin \frac{{n\pi y}}{b}{\text{dy;}} \\ \end{gathered} $$

APPENDIX C

$${{k}_{0}} = - \frac{{{{c}_{{27}}}}}{{{{c}_{{11}}}}};$$
(C.1)
$$\begin{gathered} \omega _{0}^{2} = \frac{{{{c}_{{18}}}}}{{{{c}_{{11}}}}} + \frac{{{{c}_{{19}}}{{\Omega }_{{11}}}}}{{{{c}_{{11}}}{{\Omega }_{9}}}} + \frac{{{{c}_{{20}}}{{\Omega }_{5}}}}{{{{c}_{{11}}}{{\Omega }_{4}}}} - \frac{{{{c}_{{16}}}\Omega _{1}^{4}}}{{{{c}_{{11}}}\Omega _{1}^{1}}} - \frac{{{{c}_{{16}}}\Omega _{1}^{3}{{\Omega }_{5}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{4}}}} - \frac{{{{c}_{{16}}}\Omega _{1}^{2}{{\Omega }_{{11}}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{9}}}} + \frac{{{{c}_{{17}}}{{b}_{{14}}}\Omega _{1}^{4} - {{c}_{{17}}}{{b}_{{16}}}\Omega _{1}^{1}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}}} \\ {\kern 1pt} + \frac{{{{c}_{{17}}}{{b}_{{14}}}\Omega _{1}^{2}{{\Omega }_{{11}}} - {{c}_{{17}}}{{b}_{{18}}}\Omega _{1}^{1}{{\Omega }_{{11}}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{9}}}} + \frac{{{{c}_{{17}}}{{b}_{{14}}}\Omega _{1}^{3}{{\Omega }_{5}} - {{c}_{{17}}}{{b}_{{19}}}\Omega _{1}^{1}{{\Omega }_{5}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{4}}}}; \\ \end{gathered} $$
(C.2)
$$\begin{gathered} \chi = \frac{{{{c}_{{21}}}}}{{{{c}_{{11}}}}} + \frac{{{{c}_{{25}}}{{\Omega }_{{11}}}}}{{{{c}_{{11}}}{{\Omega }_{9}}}} + \frac{{{{c}_{{26}}}{{\Omega }_{5}}}}{{{{c}_{{11}}}{{\Omega }_{4}}}} + \frac{{{{c}_{{20}}}{{\Omega }_{6}}}}{{{{c}_{{11}}}{{\Omega }_{4}}}} + \frac{{{{c}_{{19}}}{{\Omega }_{{10}}}}}{{{{c}_{{11}}}{{\Omega }_{9}}}} - \frac{{{{c}_{{16}}}\Omega _{1}^{5}}}{{{{c}_{{11}}}\Omega _{1}^{1}}} - \frac{{{{c}_{{23}}}\Omega _{1}^{4}}}{{{{c}_{{11}}}\Omega _{1}^{1}}} - \frac{{{{c}_{{16}}}\Omega _{1}^{3}{{\Omega }_{6}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{4}}}} - \frac{{{{c}_{{16}}}\Omega _{1}^{2}{{\Omega }_{{10}}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{9}}}} \\ {\kern 1pt} - \frac{{{{c}_{{23}}}\Omega _{1}^{2}{{\Omega }_{{11}}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{9}}}} - \frac{{{{c}_{{23}}}\Omega _{1}^{3}{{\Omega }_{5}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{4}}}} + \frac{{{{c}_{{17}}}{{b}_{{14}}}\Omega _{1}^{5} - {{c}_{{17}}}{{b}_{{17}}}\Omega _{1}^{1}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}}} + \frac{{{{c}_{{24}}}{{b}_{{14}}}\Omega _{1}^{4} - {{c}_{{24}}}{{b}_{{16}}}\Omega _{1}^{1}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}}} \\ {\kern 1pt} + \frac{{{{c}_{{17}}}{{b}_{{14}}}\Omega _{1}^{2}{{\Omega }_{{10}}} - {{c}_{{17}}}{{b}_{{18}}}\Omega _{1}^{1}{{\Omega }_{{10}}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{9}}}} + \frac{{{{c}_{{17}}}{{b}_{{14}}}\Omega _{1}^{3}{{\Omega }_{6}} - {{c}_{{17}}}{{b}_{{19}}}\Omega _{1}^{1}{{\Omega }_{6}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{4}}}} \\ {\kern 1pt} + \frac{{{{c}_{{24}}}{{b}_{{14}}}\Omega _{1}^{2}{{\Omega }_{{11}}} - {{c}_{{24}}}{{b}_{{18}}}\Omega _{1}^{1}{{\Omega }_{{11}}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{9}}}} + \frac{{{{c}_{{24}}}{{b}_{{14}}}\Omega _{1}^{3}{{\Omega }_{5}} - {{c}_{{24}}}{{b}_{{19}}}\Omega _{1}^{1}{{\Omega }_{5}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{4}}}} \\ \end{gathered} $$
(C.3)
$$\begin{gathered} {\kern 1pt} \lambda = \frac{{{{c}_{{22}}}}}{{{{c}_{{11}}}}} + \frac{{{{c}_{{25}}}{{\Omega }_{{10}}}}}{{{{c}_{{11}}}{{\Omega }_{9}}}} + + \frac{{{{c}_{{26}}}{{\Omega }_{6}}}}{{{{c}_{{11}}}{{\Omega }_{4}}}} - \frac{{{{c}_{{23}}}\Omega _{1}^{5}}}{{{{c}_{{11}}}\Omega _{1}^{1}}} - \frac{{{{c}_{{23}}}\Omega _{1}^{2}{{\Omega }_{{10}}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{9}}}} - \frac{{{{c}_{{23}}}\Omega _{1}^{3}{{\Omega }_{6}}}}{{{{c}_{{11}}}\Omega _{1}^{1}{{\Omega }_{4}}}} + \frac{{{{c}_{{24}}}{{b}_{{14}}}\Omega _{1}^{5} - {{c}_{{24}}}{{b}_{{17}}}\Omega _{1}^{1}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}}} \\ {\kern 1pt} + \frac{{{{c}_{{24}}}{{b}_{{14}}}\Omega _{1}^{2}{{\Omega }_{{10}}} - {{c}_{{24}}}{{b}_{{18}}}\Omega _{1}^{1}{{\Omega }_{{10}}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{9}}}} + \frac{{{{c}_{{24}}}{{b}_{{14}}}\Omega _{1}^{3}{{\Omega }_{6}} - {{c}_{{24}}}{{b}_{{19}}}\Omega _{1}^{1}{{\Omega }_{6}}}}{{{{c}_{{11}}}{{b}_{{15}}}\Omega _{1}^{1}{{\Omega }_{4}}}}, \\ \end{gathered} $$
(C.4)

where Ωi (i = 1~11), \(\Omega _{1}^{j}\)(j = 1~11) are given by:

$$\begin{gathered} \Omega _{1}^{1} = {{a}_{{15}}}{{b}_{{14}}} - {{b}_{{15}}}{{a}_{{14}}};\quad \Omega _{1}^{2} = {{a}_{{15}}}{{b}_{{18}}} - {{b}_{{15}}}{{a}_{{18}}};\quad \Omega _{1}^{3} = {{a}_{{15}}}{{b}_{{19}}} - {{b}_{{15}}}{{a}_{{19}}};\quad \Omega _{1}^{4} = {{a}_{{15}}}{{b}_{{16}}} - {{b}_{{15}}}{{a}_{{16}}}; \\ \Omega _{1}^{5} = {{a}_{{15}}}{{b}_{{17}}} - {{b}_{{15}}}{{a}_{{17}}};\quad \Omega _{1}^{6} = {{d}_{{15}}}{{b}_{{14}}} - {{b}_{{15}}}{{d}_{{14}}};\quad \Omega _{1}^{7} = {{e}_{{15}}}{{b}_{{14}}} - {{b}_{{15}}}{{e}_{{14}}};\quad \Omega _{1}^{8} = {{d}_{{18}}}{{b}_{{15}}} - {{b}_{{18}}}{{d}_{{15}}}; \\ \Omega _{1}^{9} = {{e}_{{18}}}{{b}_{{15}}} - {{b}_{{18}}}{{e}_{{15}}};\quad \Omega _{1}^{{10}} = {{e}_{{19}}}{{b}_{{15}}} - {{b}_{{19}}}{{e}_{{15}}};\quad \Omega _{1}^{{11}} = {{d}_{{19}}}{{b}_{{15}}} - {{b}_{{19}}}{{d}_{{15}}};\quad \Omega _{1}^{{12}} = {{d}_{{16}}}{{b}_{{15}}} - {{b}_{{16}}}{{d}_{{15}}}; \\ \Omega _{1}^{{13}} = {{b}_{{15}}}{{e}_{{16}}} - {{e}_{{15}}}{{b}_{{16}}};\quad \Omega _{1}^{{14}} = {{d}_{{17}}}{{b}_{{15}}} - {{b}_{{17}}}{{d}_{{15}}};\quad \Omega _{1}^{{15}} = {{e}_{{17}}}{{b}_{{15}}} - {{b}_{{17}}}{{e}_{{15}}}; \\ {{\Omega }_{2}} = \frac{{\Omega _{1}^{6}\Omega _{1}^{2} + \Omega _{1}^{8}\Omega _{1}^{1}}}{{{{b}_{{15}}}\Omega _{1}^{1}}};\quad {{\Omega }_{3}} = \frac{{\Omega _{1}^{7}\Omega _{1}^{2} + \Omega _{1}^{9}\Omega _{1}^{1}}}{{{{b}_{{15}}}\Omega _{1}^{1}}};\quad {{\Omega }_{4}} = {{\Omega }_{2}}{{\Omega }_{8}} - {{\Omega }_{3}}{{\Omega }_{7}}; \\ {{\Omega }_{5}} = \frac{{(\Omega _{1}^{6}\Omega _{1}^{4} + \Omega _{1}^{{12}}\Omega _{1}^{1}){{\Omega }_{3}} - (\Omega _{1}^{7}\Omega _{1}^{4} + \Omega _{1}^{{13}}\Omega _{1}^{1}){{\Omega }_{2}}}}{{{{b}_{{15}}}\Omega _{1}^{1}}}; \\ {{\Omega }_{6}} = \frac{{(\Omega _{1}^{6}\Omega _{1}^{5} + \Omega _{1}^{{14}}\Omega _{1}^{1}){{\Omega }_{3}} - (\Omega _{1}^{7}\Omega _{1}^{5} + \Omega _{1}^{{15}}\Omega _{1}^{1}){{\Omega }_{2}}}}{{{{b}_{{15}}}\Omega _{1}^{1}}}; \\ {{\Omega }_{7}} = \frac{{\Omega _{1}^{6}\Omega _{1}^{3} + \Omega _{1}^{{11}}\Omega _{1}^{1}}}{{{{b}_{{15}}}\Omega _{1}^{1}}};\quad {{\Omega }_{8}} = \frac{{\Omega _{1}^{7}\Omega _{1}^{3} + \Omega _{1}^{{10}}{{\Omega }_{1}}}}{{{{b}_{{15}}}{{\Omega }_{1}}}};\quad {{\Omega }_{9}} = {{\Omega }_{3}}{{\Omega }_{7}} - {{\Omega }_{2}}{{\Omega }_{8}}; \\ {{\Omega }_{{10}}} = \frac{{(\Omega _{1}^{6}\Omega _{1}^{5} + \Omega _{1}^{{14}}\Omega _{1}^{1}){{\Omega }_{8}} - (\Omega _{1}^{7}\Omega _{1}^{5} + \Omega _{1}^{{15}}\Omega _{1}^{1}){{\Omega }_{7}}}}{{{{b}_{{15}}}\Omega _{1}^{1}}}; \\ {{\Omega }_{{11}}} = \frac{{(\Omega _{1}^{6}\Omega _{1}^{4} + \Omega _{1}^{{12}}\Omega _{1}^{1}){{\Omega }_{8}} - (\Omega _{1}^{7}\Omega _{1}^{4} + \Omega _{1}^{{13}}\Omega _{1}^{1}){{\Omega }_{7}}}}{{{{b}_{{15}}}\Omega _{1}^{1}}}. \\ \end{gathered} $$
(C.5)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhou, L. & Peng, X. Comparative Study of Free Vibration for Carbon Nanotube-Reinforced Composite Plates Based on Various Higher-Order Plate Theories. Mech. Solids 58, 1828–1847 (2023). https://doi.org/10.3103/S0025654422600684

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422600684

Keywords:

Navigation