Skip to main content
Log in

DISPERSION AND SPATIAL LOCALIZATION OF BENDING WAVES PROPAGATING IN A TIMOSHENKO BEAM LAYING ON A NONLINEAR ELASTIC BASE

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

In this article, we consider flexural (bending) waves propagating in a homogeneous beam fixed on a nonlinear elastic foundation. The dynamic behavior of the beam is determined by Timoshenko’s theory. The system of equations describing the bending vibrations of the beam is reduced to a single nonlinear fourth-order equation for the transverse displacements of the beam median line particles. We state that if the beam stiffness is small compared to the linear stiffness of the foundation, the evolutionary equation is a modified Ostrovsky equation with an additional third-order nonlinear term. For the evolutionary equation, exact soliton solutions are found from the class of stationary waves in the form of a kink and an antikink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Achenbach and C. T. Sun, “Moving load on a flexible supported Timoshenko beam,” Int. J. Solid Struct. 1, 353–370 (1965).

    Article  Google Scholar 

  2. L.I. Slepyan, Unsteady Elastic Waves (Sudostroenie, Leningrad, 1972) [in Russian]. Slepyan L. I. Unsteady elastic waves. L.: Shipbuilding, 1972. 376 c.

    Google Scholar 

  3. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  4. E. I. Grigolyuk and I. T. Selezov, Nonclassical Theories of Rod, Plate, and Shell Vibrations (VINITI, Moscow, 1973) [in Russian].

    Google Scholar 

  5. B. A. H. Abbas and J. Thomas, “Dynamic stability of Timoshenko beams resting on an elastic foundation,” J. Sound Vibr. 60 (1), 33–44. 1978.

    Article  ADS  Google Scholar 

  6. I. I. Artobolevskii, Yu. I. Bobrovnitskii, and M. D. Genkin, Introduction to Acoustic Dynamics of Mashinery (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  7. A. Ya. Sagomonyan, Stress Waves in Continuous Media (Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  8. M. Eisenberger and J. Clastomik, “Beams on variable two-parameter elastic foundation,” Comp. Struct. 23, 351–356 (1986).

    Article  Google Scholar 

  9. Yu. D. Kaplunov and G. B. Muravskii, “Action of a uniformly variable moving force on a Timoshenko beam on an elastic foundation. Transitions through the critical velocities,” J. Appl. Math. Mech. 51 (3), 370–376 (1987). https://doi.org/10.1016/0021-8928(87)90115-8

    Article  MATH  Google Scholar 

  10. T. Yokoyama, “Parametric instability of Timoshenko beams resting on an elastic foundation,” Comp. Struct. 28 (2), 207–216 (1988).

    Article  Google Scholar 

  11. R. C. Kar and T. Sujata, “Parametric instability of Timoshenko beam with thermal gradient resting on a variable Pasternak foundation,” Comp. Struct. 36 (4), 659–665 (1990).

    Article  Google Scholar 

  12. R. H. Gutierrez, P. A. Laura, and R. E. Rossi, “Fundamental frequency of vibration of a Timoshenko beam of non-uniform thickness,” J. Sound Vibr. 145, 241–245 (1991).

    Article  Google Scholar 

  13. S. Y. Lee, Y. H. Kuo, and F. Y. Lin, “Stability of a Timoshenko beam resting on a Winkler elastic foundation,” J. Sound Vibr. 153 (2), 193–202 (1992).

    Article  ADS  Google Scholar 

  14. W. L. Cleghorn and B. Tabarrok, “Finite element formulation of tapered Timoshenko beam for free lateral vibration analysis,” J. Sound Vibr. 152, 461–470 (1992).

    Article  ADS  Google Scholar 

  15. S. F. Felszeghy, “The Timoshenko beam on an elastic foundation and subject to a moving step load,” J. Vibr. Acoust. 118 (3), 277–284 (1996).

    Article  Google Scholar 

  16. J. H. Kim and Y. S. Choo, “Dunamic stability of a free-free Timoshenko beam subjected to a pulsating follower force,” J. Sound Vibr. 216 (4), 623–636 (1998).

    Article  ADS  Google Scholar 

  17. H.P. Lee, “Dynamic response of a Timoshenko beam on a Winkler foundation subjected to a moving mass,” Appl. Acoust. 55 (3), 203–215 (1998).

    Article  Google Scholar 

  18. A. S. J. Suiker, R. de Borst, and C. Esveld, “Critical behavior of a Timoshenko beam half plane system under a moving load,” Arch. Appl. Mech. 68 (3–4), 158–168 (1998).

  19. C. M. Wang, K. Y. Lam, and X. O. He, “Exact solution for Timoshenko beams on elastic foundations using Green’s functions,” Mech. Struct. Mach. 26, 101–113 (1998).

    Article  Google Scholar 

  20. Vibrations in Engineering: A Reference Book in 6 Volumes, Ed. by K. V. Frolov, Vol. 1: Vibrations of Linear Systems, 2nd ed., Ed. by V. V. Bolotina (Mashinostroyenie, Moscow, 1999) [in Russian].

  21. T.X. Wu and D.J. Thompson, “A double Timoshenko beam model for vertical vibration analists of railway track at high frequencies,” J. Sound Vibr. 224 (2), 329–348 (1999).

    Article  ADS  Google Scholar 

  22. Y. H. Chen and Y. H. Huang, “Dynamic stiffness of infinite Timoshenko beam on viscoelastic foundation in moving co-ordinate,” Int. J. Num. Meth. Eng. 48 (1), 1–18 (2000).

    Article  Google Scholar 

  23. Y. H. Chen, Y. H. Huang, and C. T. Shih, “Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load,” J. Sound Vibr. 241 (5), 809–824 (2001).

    Article  ADS  Google Scholar 

  24. A. I. Vesnitskii, Waves in Systems with Moving Boundaries and Loads (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  25. A. V. Metrikine and S. N. Verichev, “Instability of a moving two-mass oscillator on a flexibly supported Timoshenko beam,” Arch. Appl. Mech. 71, 613–624 (2001).

    Article  ADS  Google Scholar 

  26. S. N. Veritchev, Instability of a Vehicle Moving on an Elastic Structure (Delft University Press, Delft, 2002).

    Google Scholar 

  27. A. S. J. Suiker, The Mechanical Behaviour of Ballasted Railway Tracks (Delft University Press, Delft, 2002).

    Google Scholar 

  28. I. I. Ivanchenko, Dynamics of Transport Facilities: High-Speed Mobile and Shock Loads (Nauka, Moscow, 2011) [in Russian].

    Google Scholar 

  29. A. V. Metrikin, S. N. Verichev, and A. V. Vostroukhov, Fundamental Tasks of High-Speed Land Transport (Lambert Academy Publ., Saarbrucken, 2014) [in Russian].

    Google Scholar 

  30. U. S. Gafurov, A. V. Zemskov, and D. V.Tarlakovskii, “Algorithm for constructing surface Green’s functions in the problem of unsteady vibrations of the Timoshenko beam by taking into account diffusion,” in Dynamic and Technological Problems of Mechanics of Structures and Continuous Media. Materials of the XXV International Symposium Named after A.G. Gorshkov (Mosk. Aviats. Inst., Moscow, 2019), pp. 55–57.

  31. S.P. Timoshenko, “Static and Dynamic Problems of the Theory of Elasticity (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  32. V. I. Erofeev, V. V. Kazhaev, E. E. Lisenkova, and N. P. Semerikova, “Nonsinusoidal bending waves in timoshenko beam lying on nonlinear elastic foundation,” J. Mach. Manuf. Reliab. 37 (3), 230-235 (2008).

    Article  Google Scholar 

  33. A. I. Vesnitskii and N. D. Romanov, “Construction of a damper for suppressing the bending vibrations of a beam,” Prikl. Mekh. 24 (6), 122–124 (1988).

    Google Scholar 

  34. E. Reissner, “On postbuckling behavior and imperfection sensitivity of thin elastic plates on a non-linear elastic foundation,” Stud. Appl. Math. XLIX (1), 45–57 (1970).

    Article  Google Scholar 

  35. V. I. Erofeyev, V. V. Kazhaev, and N. P. Semerikova, Waves in Rods. Dispersion, Dissipation, Nonlinearity (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  36. L. A. Ostrovsky, “Nonlinear internal waves in a rotating ocean,” Oceanology 18, 119–125 (1978).

    Google Scholar 

  37. L. A. Ostrovsky and Yu. A. Stepanyants, “Nonlinear surface and internal waves in rotating fluids,” in Nonlinear Waves. 3. Physics and Astrophysics (Springer, Berlin, 1990; Moscow, Nauka, 1993) p. 132–153.

  38. M. L. Gandarias and M. S. Bruzón, “Symmetry analysis and exact solutions of some Ostrovsky equations,” Theor. Math. Phys. 168, 898 (2011). https://doi.org/10.1007/s11232-011-0073-3

    Article  MathSciNet  Google Scholar 

  39. Y. A. Stepanyants, “On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons,” Chaos, Solitons Fractals 28, 193–204 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  40. Y. A. Stepanyants, “Nonlinear Waves in a Rotating Ocean (The Ostrovsky Equation and Its Generalizations and Applications),” Izv. Atmos. Ocean. Phys. 56, 16–32 (2020). https://doi.org/10.1134/S0001433820010077

    Article  Google Scholar 

  41. N. M. Ryskin and D. I. Trubetskov, Nonlinear Waves (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  42. N. A. Kudryashov, Methods of Nonlinear Mathematical Physics (Intellect, Dolgoprudny, 2010) [in Russian].

    Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 20-19-00613).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Erofeev or A. V. Leontieva.

Additional information

Translated by A.A. Borimova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erofeev, V.I., Leontieva, A.V. DISPERSION AND SPATIAL LOCALIZATION OF BENDING WAVES PROPAGATING IN A TIMOSHENKO BEAM LAYING ON A NONLINEAR ELASTIC BASE. Mech. Solids 56, 443–454 (2021). https://doi.org/10.3103/S0025654421040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421040051

Keywords:

Navigation