Skip to main content
Log in

Photovoltaic Modules Recovery, Application, and Ways for Decreasing its Impact to Ecology

  • SOLAR INSTALLATIONS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The article discusses and analyzes the issue of recycling photovoltaic modules (PVMs) that have been exhausted at photovoltaic power plants (PVPPs) or failed for some other reason, using various technological processes, resulting in a different degree of processing and use of processed products, as well as the different impact of these processes on the environment. This paper presents an overview of the current state of disposal of the main components of PVPPs (PVMs) in advanced countries in context of regulatory support and the development of regulatory acts, as well as in the context of existing technologies that are applied, developed, or being developed. It substantiates the necessity and possibilities of the reuse of the overwhelming majority of materials and compounds obtained during the disposal of photovoltaic modules. Analysis of the tendencies of the rapid development of photovoltaic power in the world dictate the need to create now, without waiting for massive PVM failure, an entire industry sector that will deal with the disposal of spent PVMs and the preparation of recycled materials for reuse, which will significantly reduce negative load on the environment. The goals and tasks that need to be fulfilled in Ukraine in the direction of recycling PVMs are outlined: development and implementation of the necessary regulations, introducing new effective technologies for recycling, specialized industries with full recycling of PVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Solar power in Ukraine. https://en.wikipedia.org/wiki/ Solar_power_in_Ukraine. Accessed August 10, 2021.

  2. Statuslist de data. https://www.auswaertiges-amt.de/blob/241662/66101f9c2b110fab420e6b6ff2b46721/ statusliste-de-data.pdf. Accessed August 12, 2021.

  3. Rieztsov, V.F., Development of comprehensive measures and methodical recommendations to reduce the impact on the environment during the construction and operation of photovoltaic plants: Final report, Zbirnik referativ disertatsii, NDR ta DKR (Collection of Extended Abstracts of Dissertations), Kyiv: Inst. Renewable Energy Natl. Acad. Sci. Ukraine, 2018, no. 5.

  4. Rieztsov, V.F., Surzhik, T.V., Pundiev, V.O., Shevchuk, V.I., Kyrnos, L.A., and Sheiko, I.O., Requirements for providing environmental factors in implementation of photo energy technologies in Ukraine, Vidnovlyuvana Enerhetyka, 2019, vol. 59, no. 4, pp. 29–36. https://doi.org/10.36296/1819-8058.2019.4(59).29-36

    Article  Google Scholar 

  5. International Renewable Energy Agency (IRENA), End-of-life Management: Solar Photovoltaic Panels, 2016. https://www.irena.org. Accessed August 10, 2021.

  6. The Waste Electrical and Electronic Equipment Directive WEEE 2012/19/EU. http://procertificate.ru/standard/directive-2012-19-eu.html. Accessed August 11, 2021.

  7. EN 50625-2-4:2017. Collection, logistics and treatment requirements for WEEE. Part 2–4: Treatment requirements for photovoltaic panels.

  8. CENELEC-CLC/TS 50625-3-5. Collection, logistics and treatment requirements for WEEE. Part 3–5: Technical specification for depollution: Photovoltaic panels.

  9. U.S. Environmental Protection Agency (EPA), Resource conservation and recovery. https://www.epa.gov/ rcra/resource-conservation-and-recovery-act-rcra-regulations. Accessed August 11, 2021.

  10. NSF/ANSI 457: Sustainability Leadership of Photovoltaic Modules.

  11. Curtis, T.L., Buchanan, H., Heath, G., Smith, L., and Shaw, S., Solar photovoltaic module recycling: A survey of U.S. policies and initiative, Technical Report NREL/TP-6A20-74124, Natl. Renewable Energy Lab. (NREL), 2021. https://www.nrel.gov/docs/fy21osti/74124.pdf.

  12. Yan Li, Ge Wang, Bo Shen, Qi Zhang, Boyu Liu, and Ruoxi Xu, Conception and policy implications of photovoltaic modules end-of-life management in China, WIREs Energy Environ., 2020, vol. 10, no. 1, p. e387. /https://doi.org/10.1002/wene.387

  13. IEC 61730-1 International Electrotechnical Commission (IEC) 61730-1: Photovoltaic (PV) module safety qualification. Part 1: Requirements for construction, 2004.

  14. IEC61215 International Electrotechnical Commission (IEC) 61215: Crystalline silicon terrestrial photovoltaic modules. Design qualification and type approval, 2005, 2nd ed.

  15. IEC61646 International Electrotechnical Commission (IEC) 61646: Thin-film terrestrial photovoltaic modules. Design qualification and type approval, 2008, 2nd ed.

  16. Reil, F., Althaus, J., Vaaßen, W., Herrmann, W., and Strohkendl, K., The effect of transportation impacts and dynamic load tests on the mechanical and electrical behaviour of crystalline PV modules, Proc. 25th EUPVSEC (WIP, Valencia, Spain), 2010, pp. 3989–3992.

  17. Köntges, M., Kajari-Schröder, S., Kunze, I., and Jahn, U., Crack statistic of crystalline silicon photovoltaic modules, Proc. 20th EUPVSEC (WIP, Hamburg, Germany), 2011, pp. 3290–3294.

  18. Olschok, C., Pfeifer, M., Zech, M., Schmid, M., Zehner, M., Becker, G., Untersuchung von Handhabungsfehlern bei der Montage und Installation von PV Modulen, Proc. 27th Symposium Photovoltaische Solarenergie (OTTI, Bad Staffelstein, Germany), 2012, p. 202.

  19. IEC 61730-2 International Electrotechnical Commission (IEC) Photovoltaic (PV) module safety qualification. Part 2.

  20. Garaj, M., Hong, K.Y., Chung, H.S.-H., Zhou, J., and Lo, A.W., Photovoltaic panel health diagnostic system for solar power plants, 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 1078–1083.

  21. Lozanov, Y., Tzvetkova, S., and Petleshkov, A., Faults in photovoltaic modules and possibilities for their detection by thermographic studies, 11th Electrical Engineering Faculty Conference (BulEF), 2019, pp. 1–5.

  22. Kongphet, V., Migan-Dubois, A., Delpha, C., Diallo, D., and Lechenadec, J., Photovoltaic fault detection and diagnosis: Which level of granularity for PV modeling?, Prognostics and Health Management Conference (PHM-Besançon), 2020, pp. 180–186.

  23. Hoyer, U., Burkert, A., Auer, R., and Buerhop-Lutz, C., Analysis of PV modules by electroluminescence and IR thermography, Proc. 24th EUPVSEC (WIP, Hamburg, Germany), 2009, pp. 3262–3266.

  24. Alves dos Reis Benatto, G., et al., Drone-based daylight electroluminescence imaging of PV modules, IEEE J. Photovoltaics, 2020, vol. 10, no. 3, pp. 872–877.

    Article  Google Scholar 

  25. Bagdahn, J., Dietrich, S., Ebert, M., Fröbel, J., Hagendorf, C., Großer, S., Lausch, D., and Naumann, V., Potential induced degradation of crystalline silicon photovoltaic modules, Presentation, Technical Seminar 6 (Materials and Reliability) at the PV Japan, 2012.

  26. Berghold, J., Frank, O., Hoehne, H., Pingel, S., Richardson, B., and Winkler, M., Potential induced degradation of solar cells and panels, Proc. 25th EUPVSEC (WIP, Valencia, Spain), 2010, pp. 3753–3759.

  27. Radziemska, E., Ostrovski, P., Cenian, A., and Sawczak, M., Chemical, thermal and laser processes in recycling of photovoltaic silicon solar cells and modules, Ecol. Chem. Eng., 2010, vol. 17, no. 3, pp. 385–391.

    Google Scholar 

  28. IEC/TS 61836 Ed. 2.0 2007-12: Solar photovoltaic energy systems. Terms, definitions and symbols.

  29. Holm, N. and Martin, J., Solar Panel Recycling, Illinois Sustainable Technology Center, 2018. http://swanaillinois.com/images/files/users/swana10/N.Holm&J.Martin-ISTCSolarPowerFacts.pdf. Accessed August 10, 2021.

  30. Doi, T., Tsuda, I., Unagida, H., Murata, A., Sakuta, K., and Kurokawa, K., Experimental study on PV module recycling with organic solvent method, Sol. Energy Mater. Sol. Cells, 2001, vol. 67, nos. 1–4, pp. 397–403. https://doi.org/10.1016/S0927-0248(00)00308-1

    Article  Google Scholar 

  31. Kim, Y. and Lee, J., Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent, Sol. Energy Mater. Sol. Cells, 2012, vol. 98, pp. 317–322.

    Article  Google Scholar 

  32. Dias, P.R., Shmidt, L., Spier, G., Lunardi, M., Bilbao, J., Corkish, R., and Veit, H.M., Recycling waste solar modules using organic solvents. http://uest.ntua.gr/ heraklion2019/proceedings/pdf. Accessed August 10, 2021.

  33. Green, M.A., Thin-film solar cells: Review of materials, technologies and commercial status, J. Mater. Sci.: Mater. Electron., 2007, vol. 18, no. 1, pp. 15–19.

    Google Scholar 

  34. Raugei, M., Isasa, M., and Palmer, P.F., Potential Cd emissions from end-of-life CdTe PV, Int. J. Life Cycle Assess., 2012, vol. 17, no. 2, pp. 192–198.

    Article  Google Scholar 

  35. Polman, A., Knight, M., Garnett, E.C., Ehrler, B., and Sinke, W.C., Photovoltaic materials: Present efficiencies and future challenges, Science, 2016, vol. 352, no. 6283. https://doi.org/10.1126/science.aad4424

  36. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D., Solar cell efficiency tables (version 48), Prog. Photovoltaics: Res. Appl., 2016, vol. 24, no. 7, pp. 905–913.

    Article  Google Scholar 

  37. Wronski, C.R.C. and David, E., Amorphous silicon solar cells, Clean Electricity from Photovoltaics, Archer, M. and Hill, R., Eds., London: Imperial College Press, 2001.

    Google Scholar 

  38. End-of-life management of photovoltaic panels: Trends in PV module recycling technologies, Report IEA-PVPS T12-10:2018, Paris: Int. Energy Agency, 2018, pp. 60–64.

  39. Campo, M.D., Bonnet, D., Gegenwart, R., and Beier, J., US Patent 6572782, 2003.

  40. A mechanical technique for PV module recycling. https://www.pv-magazine.com/2020/04/01/. Accessed: August 10, 2021.

  41. Verkhovna Rada Ukraïni, Zakon Ukraïni “Pro vidkhody” (Verkhovna Rada of Ukraine, Law of Ukraine “On Waste”). https://zakon.rada.gov.ua/laws/show/187/ 98-VR#Text. Accessed August 18, 2021.

  42. Verkhovna Rada Ukraïni, Zakon Ukraïni “Pro okhoronu navkolyshn’oho pryrodnoho seredovyscha” (Verkhovna Rada of Ukraine, Law of Ukraine “On Environmental Protection”). https://zakon.rada.gov.ua/laws/show/ 1264-12#Text. Accessed August 18, 2021.

  43. Verkhovna Rada Ukraïni, Zakon Ukraïni “Pro zabezpechennya sanitarnoho ta epidemichnoho blahopoluchchya naselennya” (Verkhovna Rada of Ukraine, Law of Ukraine “About Ensuring Sanitary and Epidemic Welfare of the Population”). https://zakon.rada. gov.ua/laws/show/4004-12#Text. Accessed August 18, 2021.

  44. Derzhavnii Standart Ukraïni (State Standard of Ukraine) 8328:2015: Solar Energy. Photovoltaic Modules. General Technical Requirements, 2017.

  45. Derzhavnii Standart Ukraïni (State Standard of Ukraine) 8635:2016: Solar Energy. Sites for Photovoltaic Stations. Connection to the Electric Power System, 2017.

Download references

ACKNOWLEDGMENTS

This research is not funded by any agencies in public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pundev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Zikeeva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reztsov, V.F., Surzhyk, T.V., Pundev, V.A. et al. Photovoltaic Modules Recovery, Application, and Ways for Decreasing its Impact to Ecology. Appl. Sol. Energy 58, 217–225 (2022). https://doi.org/10.3103/S0003701X22020177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X22020177

Keywords:

Navigation