Skip to main content
Log in

A Review on Solar Photovoltaic System Efficiency Improving Technologies

  • SOLAR INSTALLATIONS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The use of solar energy-based technologies has sparked increased interest in recent years to meet our society’s various energy demands. Photovoltaic (PV) cell efficiency is improved, and low-grade heat is generated by combining a PV and thermal system into a single unit. Researchers are working on improving the PVT system for the past two–three decades, but only a few effective PVT systems are currently available on the consumer scale. This paper reviews various tracking and cooling techniques that are being used to track maximum sun radiations and decrease the probability of increased temperature when attempting for improving PV solar panel performance. So, many research papers have been analyzed and classified based on their emphasis, contribution, and the technologies used to perform PV panel tracking and cooling. This research would be beneficial to new researchers who are interested in working in this area and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. World Energy Outlook. https://www.iea.org/ weo2018/electricity/. Accessed March 2019.

  2. Cotfas, D.T., and Cotfas, P.A., Multiconcept methods to enhance photovoltaic system efficiency, Int. J. Photoenergy, 2019, vol. 2019, p. 1905041.

    Article  Google Scholar 

  3. Idoko, L., Anaya-Lara, O., and McDonald, A., Enhancing PV modules efficiency and power output using multi-concept cooling technique, Energy Rep., 2018, vol. 4, pp. 357–369.

    Article  Google Scholar 

  4. Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., and Kirpichnikova, I., Advanced cooling techniques of P.V. modules: A state of art, Case Studies Therm. Eng., 2020, vol. 21, p. 100674.

    Article  Google Scholar 

  5. Chaabane, M., Charfi, W., Mhiri, H., and Bournot, P., Performance evaluation of solar photovoltaic systems, Int. J. Green Energy, 2019, vol. 16, no. 14, pp. 1295–1303.

    Article  Google Scholar 

  6. Seme, S., Stumberger, B., Hadziselimovic, M., and Sredensek, K., Solar photovoltaic tracking systems for electricity generation: A review, Energies, 2020, vol. 13, no. 16, p. 4224.

    Article  Google Scholar 

  7. Siecker, J., Kusakana, K., and Numbi, B.P., A review of solar photovoltaic systems cooling technologies, Renewable Sustainable Energy Rev., 2017, vol. 79, pp. 192–203.

    Article  Google Scholar 

  8. Frid, S.E., Simonov, V.M., Lisitskaya, N.V., Avezova, N.R., and Khaitmukhamedov, A.E., Efficiency of solar trackers and bifacial photovoltaic panels for southern regions of the Russian Federation and the Republic of Uzbekistan, Appl. Sol. Energy, 2020, vol. 56, pp. 425–430.

    Article  Google Scholar 

  9. Cox, C.H., and Raghuraman, P., Design considerations for flat-plate-photovoltaic/thermal collectors, Sol. Energy, 1985, vol. 35, no. 3, pp. 227–241.

    Article  Google Scholar 

  10. Bergene, T., and Lovvik, O.M., Model calculations on a flat-plate solar heat collector with integrated solar cells, Fuel Energy Abstr., 1996, vol. 37, no. 3, p. 200.

    Article  Google Scholar 

  11. Alamoud, A.R.M., Performance evaluation of various flat plate photovoltaic modules in hot and arid environment, J. King Saud Univ.–Eng. Sci., 2000, vol. 12, no. 2, pp. 235–243.

    Google Scholar 

  12. Abdallah, S., The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics, Energy Convers. Manage., 2004, vol. 45, nos. 11–12, pp. 1671–1679.

    Article  Google Scholar 

  13. Nishioka, K., Takamoto, T., Agui, T., Kaneiwa, M., Uraoka, Y., and Fuyuki, T., Annual out-put estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, no. 1, pp. 57–67.

    Article  Google Scholar 

  14. Dupeyrat, P., Menezo, C., Rommel, M., and Henning, H.M., Efficient single glazed flat plate photovoltaic–thermal hybrid collector for domestic hot water system, Sol. Energy, 2011, vol. 85, no. 7, pp. 1457–468.

    Article  Google Scholar 

  15. Zamzamian, A., KeyanpourRad, M., KianiNeyestani, M., and Jamal-Abad, T.M., An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors, Renewable Energy, 2014, vol. 71, pp. 658–664.

    Article  Google Scholar 

  16. Imtiaz Hussain, M. and Kim, J.-T., Conventional fluid- and nanofluidbased photovoltaic thermal (PV/T) systems: a techno-economic and environmental analysis, Int. J. Green Energy, 2018, vol. 15, no. 11, pp. 596–604.

    Article  Google Scholar 

  17. Manokar, A.M., Vimala, M., Sathyamurthy, R., Kabeel, A.E., Winston, D.P., and Chamkha, A.J., Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector, Environ., Dev. Sustainability, 2019, vol. 22, no. 5, pp. 4145–4167.

    Article  Google Scholar 

  18. Hu, M., Guo, C., Zhao, B., Ao, X., Suhendri, Cao, J., and Pei, G., A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector, Renewable Energy, 2020, vol. 167, pp. 884–898.

    Article  Google Scholar 

  19. Strebkov, D.S. and Filippchenkova, N.S., Results of an experimental study of a solar photovoltaic-thermal module, Appl. Sol. Energy, 2020, vol. 56, pp. 442–448.

    Article  Google Scholar 

  20. Tchakounté, H., Fapi, C.B.N., Kamta, M., and Woafo, P., Experimental assessment of a smart sun tracking system consumption for the improvement of a crystalline silicon photovoltaic module performance under variable weather conditions, Appl. Sol. Energy, 2019, vol. 55, no. 6, pp. 385–396.

    Article  Google Scholar 

  21. Rajput N.S., Singh, S., and Kulshreshtha, S., Investigation of efficiency of flat plate collector using CuO–H 2 O nanofluid, Advances in Engineering Design, Singapore: Springer, 2021, pp. 285–295.

    Google Scholar 

  22. Negi, B.S., Kandpal, T.C., and Mathur, S.S., Designs and performance characteristics of a linear Fresnel reflector solar concentrator with a flat vertical absorber, Solar Wind Technol., 1990, vol. 7, no. 4, pp. 379–392.

    Article  Google Scholar 

  23. Whitaker, C.M. and Dostalek, F.J., Performance of the EPRI high concentration photovoltaic module, Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference, 1991, pp. 512–517.

  24. Uematsu, T., Yazawa, Y., Miyamura, Y., Muramatsu, S., Ohtsuka, H., Tsutsui, K., and Warabisako, T., Static concentrator photovoltaic module with prism array, Sol. Energy Mater. Sol. Cells, 2001, vol. 67, nos. 1–4, pp. 415–423.

    Article  Google Scholar 

  25. Bingham, C., Lewandowski, A., Stone, K., Sherif, R., Ortabasi, U., and Kusek, S., Concentrating photovoltaic module testing at NREL’s concentrating solar radiation users facility, National Center for Photovoltaics and Solar Program Review Meeting, Denver, CO, 2003, pp. 218–220.

  26. Cao, M., Butler, S., Benoit, J.T., Jiang, Y., Radhakrishnan, R., Chen, Y., and Horne, S., Thermal stress analysis/life prediction of concentrating photovoltaic module, J. Sol. Energy Eng., 2008, vol. 130, no. 2, p. 021011.

    Article  Google Scholar 

  27. Do, K.H., Kim, T.H., Kim, S.J., and Jang, S.P., Study on a cooling system for a concentrating photovoltaic module, 14th Int. Heat Transfer Conf., 2010, pp. 525–532.

  28. Anton, I., Domínguez, C., Victoria, M., Herrero, R., Askins, S., and Sala, G., Characterization capabilities of solar simulators for concentrator photovoltaic modules, Jap. J. Appl. Phys., 2012, vol. 51, no. 10S, pp. 10ND-1–10ND-4.

  29. Schultz, R.D., van Dyk, E.E., and Vorster, F.J., The optical design and performance of a concentrator photovoltaic module, J. Energy South. Afr., 2015, vol. 26, no. 2, pp. 53–63.

    Article  Google Scholar 

  30. Robertson, J., Riggs, B., Islam, K., Ji, Y.V., Spitler, C.M., Gupta, N., and Escarra, M., Field testing of a spectrum-splitting transmissive concentrator photovoltaic module, Renewable Energy, 2019, vol. 139, pp. 806–814.

    Article  Google Scholar 

  31. Forcade, G., Valdivia, C.E., St-Pierre, P., Ritou, A., Volatier, M., Jaouad, A., Darnon, M., and Hinzer, K., Nanostructured surface for extended temperature operating range in concentrator photovoltaic modules, 16th Int. Conf. Concentrator Photovoltaic Systems (CPV-16), AIP Conf. Proc., 2020, vol. 2298, no. 1, p. 05000.

  32. Sato, D., Masuda, T., Araki, K., Yamaguchi, M., Okumura, K., Sato, A., and Yamada, N., Stretchable micro-scale concentrator photovoltaic module with 15.4% efficiency for three-dimensional curved surfaces, Commun. Mater., 2021, vol. 2, no. 1, pp. 1–11.

    Article  Google Scholar 

  33. Muller-Steinhagen, H. and Trieb, F., Concentrating solar power—a review of the technology, Ingenia, vol. 18, pp. 43–50.

  34. Mehos, M., Hafemeister, D., Levi, B., Levine, M., and Schwartz, P., Concentrating solar power, AIP Conference Proceedings, 2008, vol. 1044, p. 331.

    Article  Google Scholar 

  35. Fraas, L., Minkin, L., Avery, J., Huang, H.X., Fraas, J., and Uppal, P., Portable concentrating solar power supplies, 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 003025–003029.

  36. Usaola, J., Capacity credit of concentrating solar power, IET Renewable Power Generation, 2013, vol. 7, no. 6, pp. 680–88.

    Article  Google Scholar 

  37. Singh, I., Singh, D., and Singh, M., Thermal modeling and performance evaluation of photovoltaic/thermal (PV/T) systems: A parametric study, Int. J. Green Energy, 2019, vol. 16, no. 6, pp. 483–489.

    Article  Google Scholar 

  38. Milani, R., Szklo, A., and Hoffmann, B.S., Hybridization of concentrated solar power with biomass gasification in Brazil’s semiarid region, Energy Convers. Manage., 2017, vol. 143, pp. 522–537.

    Article  Google Scholar 

  39. Xu, X., Wang, X., Li, P., Li, Y., Hao, Q., Xiao, B., and Gervasio, D., Experimental test of properties of KCl–MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems, J. Sol. Energy Eng., 2018, vol. 40, no. 5, p. 051011.

    Article  Google Scholar 

  40. Ho, C.K., Christian, J.M., and Pye, J.D., Bladed Solar Thermal Receivers for Concentrating Solar Power, Albuquerque, NM: Sandia National Lab., 2019.

    Google Scholar 

  41. He, Y.L., Qiu, Y., Wang, K., Yuan, F., Wang, W.Q., Li, M.J., and Guo, J.Q., Perspective of concentrating solar power, 2020, Energy, vol. 198, p. 117373.

    Article  Google Scholar 

  42. Chen, H., Wang, Y., Ding, Y., Cai, B., and Yang, J., Numerical analysis on the performance of high concentration photovoltaic systems under the nonuniform energy flow density, Frontiers Energy Res., 2021, vol. 9, p. 705801.

    Article  Google Scholar 

  43. Lorenzo, E., Perez, M., Ezpeleta, A., and Acedo, J., Design of tracking photovoltaic systems with a single vertical axis, Prog. Photovoltaics: Res. Appl., 2002, vol. 10, pp. 533–543.

    Article  Google Scholar 

  44. Clifford, M.J. and Eastwood, D., Design of a novel passive solar tracker, Sol. Energy, 2004, vol. 77, no. 3, pp. 269–280.

    Article  Google Scholar 

  45. Huang, B.J. and Sun, F.S., Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector, Energy Convers. Manage., 2007, vol. 48, pp. 1273–1280.

    Article  Google Scholar 

  46. Li, D.H.W. and Lam, T.N.T., Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data, Int. J. Photoenergy, 2007, vol. 2007, p. 085402.

    Article  Google Scholar 

  47. Abdallah, S. and Badran, O.O., Sun tracking system for productivity enhancement of solar still, Desalination, 2008, vol. 220, nos. 1–3, pp. 669–676.

    Article  Google Scholar 

  48. Rizk, J. and Chaiko, Y., Solar tracking system: More efficient use of solar panels, Int. J. Electr. Comput. Eng., 2008, vol. 2, no. 5, pp. 313–315.

    Google Scholar 

  49. Khanaki, R., Mohd Radzi, M.A., and Marhaban, M.H., Artificial neural network based maximum power point tracking controller for photovoltaic standalone system, Int. J. Green Energy, 2016, vol. 13, no. 3, pp. 283–291.

    Article  Google Scholar 

  50. Sungur, C., Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey, Renewable Energy, vol. 4, pp. 1119–1125.

  51. Tang, R. and Yu, Y., Feasibility and optical performance of one axis three positions sun-tracking polar-axis aligned CPCs for photovoltaic applications, Sol. Energy, 2010, vol. 84, no. 9, pp. 1666–1675.

    Article  Google Scholar 

  52. Huld, T., Cebecauer, T., Suri, M., and Dunlop, E., Analysis of one-axis tracking strategies for PV systems in Europe, Prog. Photovoltaics Res. Appl., 2010, vol. 18, pp. 183–194.

    Article  Google Scholar 

  53. Huang, B.J., Ding, W.L., and Huang, Y.C., Long-term field test of solar PV power generation using one-axis 3-position sun tracker, Sol. Energy, 2011, vol. 85, no. 9, pp. 1935–1944.

    Article  Google Scholar 

  54. Jacobson, L.D., Seaver, A., and Tang, J., AstroCalc4R: Software to calculate solar zenith angle; time at sunrise, local noon, and sunset; and photosynthetically available radiation based on date, time, and location, Northeast Fisheries Science Center Reference Document 11-14, 2011.

  55. Ray, S.K., Bashar, M.A., Ahmad, M., and Sayed, F.B., Two ways of rotating freedom solar tracker by using ADC of microcontroller, Global J. Res. Eng., 2012, vol. 12, no. 4, pp. 28–34.

    Google Scholar 

  56. El-Tous, Y., Badran, O.O., and Al-Mofleh, A., Thermal evaluation of a sun tracking solar cooker, Int. J. Energy Environ., 2012, vol. 3, no. 1, pp. 83–90.

    Google Scholar 

  57. Li, G., Tang, R., and Zhong, H., Optical performance of horizontal single-axis tracked solar panels, Energy Procedia, 2012, vol. 16, pp. 1744–1752.

    Article  Google Scholar 

  58. Huang, B.J., Huang, Y.C., Chen, G.Y., Hsu, P.C., and Li, K., Improving solar PV system efficiency using one-axis 3-position sun tracking, Energy Procedia, 2013, vol. 33, pp. 280–287.

    Article  Google Scholar 

  59. Dhanabal, R., Bharathi, V., Ranjitha, R., Ponni, A., Deepthi, S., and Mageshkannan, P., Comparison of efficiencies of solar tracker systems with static panel single-axis tracking system and dual-axis tracking system with fixed mount, Int. J. Eng. Technol., 2013, vol. 5, no. 2, pp. 1925–1933.

    Google Scholar 

  60. Batayneh, W., Owais, A., and Nairoukh, M., An intelligent fuzzy based tracking controller for a dual-axis solar PV system, Autom. Constr., 2013, vol. 29, pp. 100–106.

    Article  Google Scholar 

  61. Gupta, B., Sonkar, N., Bhalavi, B.S., and Edla, P.J., Design, construction and effectiveness analysis of hybrid automatic solar tracking system for amorphous and crystalline solar cells, Am. J. Eng. Res. (AJER), 2013, vol. 2, no. 10, pp. 221–228.

    Google Scholar 

  62. Liu, L., Han, X., Liu, C., and Wang, J., The influence factors analysis of the best orientation relative to the sun for dual-axis sun tracking system, J. Vib. Control, 2013, vol. 21, no. 2, pp. 328–334.

    Article  Google Scholar 

  63. Maharaja, K., Joseph Xavier, R., Jenifer Amla, L., and Balaji, P.P., Intensity based dual axis solar tracking system, Int. J. Appl. Eng. Res., 2015, vol. 10, no. 8, pp. 19457–19465.

    Google Scholar 

  64. Parthipan, J., Raju, B.N., and Senthilkumar, S., Design of one axis three position solar tracking system for paraboloidal dish solar collector, Recent Adv. Nano Sci. Technol., 2015, vol. 3, no. 6, pp. 2493–2500.

    Google Scholar 

  65. Abdelghani-Idrissi, M.A., Khalfallaoui, S., Seguin, D., Vernieres-Hassimi, L., and Leveneur, S., Solar tracker for enhancement of the thermal efficiency of solar water heating system, Renewable Energy, 2018, vol. 119, pp. 79–94.

    Article  Google Scholar 

  66. Afanasyeva, S., Bogdanov, D., and Breyer, C., Relevance of PV with single-axis tracking for energy scenarios, Sol. Energy, 2018, vol. 173, pp. 173–191.

    Article  Google Scholar 

  67. Mohammed, F.M., Mohammed, J.A.K., and Nouri, R.A., Efficiency enhancement of a dual-axis solar pv panel tracker using water-flow double glazing technique, Al-Khwarizmi Eng. J., 2018, vol. 14, no. 3, pp. 32–47.

    Article  Google Scholar 

  68. AL-Rousan, N.A., Isa, N.A.M., and Desa, M.K.M., Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system, J. King Saud Univ.–Eng. Sci., 2020, vol. 32, no. 7, pp. 459–469.

    Google Scholar 

  69. Taheri, A., Malayjerdi, M., Kazemi, M., Kalani, H., Nemati-Farouji, R., Passandideh-Fard, M., and Sardarabadi, M., Improving the performance of a nanofluid-based photovoltaic thermal module utilizing dual-axis solar tracker system: Experimental examination and thermodynamic analysis, Appl. Therm. Eng., 2021, vol. 196, p. 117178.

    Article  Google Scholar 

  70. Yan, Z., and Jiaxing, Z., Application of fuzzy logic control approach in a microcontroller-based sun tracking system, WASE International Conference on Information Engineering, 2010, vol. 2, pp. 161–164.

  71. Chin, C.S., Babu, A., and McBride, W., Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink, Renewable Energy, 2011, vol. 36, no. 11, pp. 3075–3090.

    Article  Google Scholar 

  72. Hammoumi, A.E., Motahhir, S., Ghzizal, A.E., Chalh, A., and Derouich, A., A simple and low-cost active dual-axis solar tracker, Energy Sci. Eng., 2018, vol. 6, no. 5, pp. 607–620.

    Article  Google Scholar 

  73. Ramsurn, R., and Aravind, C., Thermal energy recovery through optimal salt concentration in a parabolic trough systems, MATEC Web of Conferences, 2018, vol. 152, p. 03006.

  74. Jamroen, C., Komkum, P., Kohsri, S., Himananto, W., Panupintu, S., and Unkat, S., A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation, Sustainable Energy Technol. Assess., 2020, vol. 37, p. 100618.

    Article  Google Scholar 

  75. Huang, G., Wang, K., and Markides, C.N., Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems, Sci. Appl., 2021, vol. 10, no. 1, pp. 1–14.

    Google Scholar 

  76. Semma, R.P. and Imamura, M.S., Sun tracking controller for multi-kW photovoltaic concentrator system, Photovoltaic Solar Energy Conference, Palz, W., Ed., Dordrecht: Springer, 1981.

  77. Sharma, S.D., Iwata, T., Kitano, H., and Sagara, K., Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit, Sol. Energy, 2005, vol. 78, no. 3, pp. 416–426.

    Article  Google Scholar 

  78. El-Tous, Y., Badran, O.O., and Al-Mofleh, A., Thermal evaluation of a sun tracking solar cooker, Int. J. Energy Environ., 2012, vol. 3, no. 1, pp. 83–90.

    Google Scholar 

  79. Mazon-Hernandez, R., Garcia-Cascales, J.R., Vera-Garcia, F., Kaiser, A.S., and Zamora, B., Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream, Int. J. Photoenergy, 2013, vol. 2013, p. 830968.

    Article  Google Scholar 

  80. Chen, H.T., Lai, S.T., and Haung, L.Y., Investigation of heat transfer characteristics in plate-fin heat sink, Appl. Therm. Eng., 2013, vol. 50, no. 1, pp. 352–360.

    Article  Google Scholar 

  81. Alzaabi, A.A., Badawiyeh, N.K., Hantoush, H.O., and Hamid, A.K., Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE, Int. J. Smart Grid Clean Energy, 2014, vol. 3, no. 4, pp. 385–389.

    Google Scholar 

  82. Saurabh, M., Rawat, P., Debbarma, M., and Sudhakar, K., Performance of a solar panel with water immersion cooling technique, Int. J. Sci., Environ. Technol., 2014, vol. 3, no. 3, pp. 1161–1172.

    Google Scholar 

  83. Pang, W., Liu, Y., Shao, S., and Gao, X., Empirical study on thermal performance through separating impacts from a hybrid PV/TE system design integrating heat sink, Int. Comm. Heat Mass Transfer, 2015, vol. 60, pp. 9–12.

    Article  Google Scholar 

  84. Sahay, A., Sethi, V.K., Tiwari, A.C., and Pandey, M., A review of solar photovoltaic panel cooling systems with special reference to ground coupled central panel cooling system (GC-CPCS), Renewable Sustainable Energy Rev., 2015, vol. 42, pp. 306–312.

    Article  Google Scholar 

  85. Ventola, L., Curcuruto, G., Fasano, M., Fotia, S., Pugliese, V., Chiavazzo, E., and Asinari, P., unshrouded plate fin heat sinks for electronics cooling: Validation of a comprehensive thermal model and cost optimization in semi-active configuration, Energies, 2016, vol. 9, no. 8, p. 608.

    Article  Google Scholar 

  86. Good, C., Environmental impact assessments of hybrid photovoltaic–thermal (PV/T) systems—A review, Renewable Sustainable Energy Rev., 2016, vol. 55, pp. 234–239.

    Article  Google Scholar 

  87. Nizetic, S., Coko, D., Yadav, A., and Grubisic-Cabo, F., Water spray cooling technique applied on a photovoltaic panel: The performance response, Energy Convers. Manage., 2016, vol. 108, pp. 287–296.

    Article  Google Scholar 

  88. Hudisteanu, S.V., Popovici, C.G., Mateescu, T.D., and Chereches, N.C., Efficiency analysis of BIPV systems for different locations in Romania, Energy Procedia, 2017, vol. 112, pp. 404–411.

    Article  Google Scholar 

  89. Elbreki, A.M., Alghoul, M.A., Sopian, K., and Hussein, T., Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution, Renewable Sustainable Energy Rev., 2017, vol. 69, pp. 961–1017.

    Article  Google Scholar 

  90. Peng, Z., Herfatmanesh, M.R., and Liu, Y., Cooled solar PV panels for output energy efficiency optimisation, Energy Convers. Manage., 2017, vol. 150, pp. 949–955.

    Article  Google Scholar 

  91. Jaaz, A.H., Sopian, K., and Gaaz, T.S., Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated, Results Phys., 2018, vol. 9, pp. 500–510.

    Article  Google Scholar 

  92. Rodrigoa, P.M., Valera, A., Fernandez, E.F., and Almonacid, F.M., Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules, Appl. Energy, 2019, vol. 238, pp. 1150–1162.

    Article  Google Scholar 

  93. Kim, S.M., Kim, J.H., and Kim, J.T., Experimental study on the thermal and electrical characteristics of an air-based photovoltaic thermal collector, Energies, 2019, vol. 12, no. 14, p. 2661.

    Article  Google Scholar 

  94. Lee, J.H., Hwang, S.G., and Lee, G.H., Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids, Energies, 2019, vol. 12, no. 16, p. 3063.

    Article  Google Scholar 

  95. Singh, N.P. and Reddy, K.S., Inverse heat transfer technique for estimation of focal flux distribution for a concentrating photovoltaic (CPV) square solar parabola dish collector, Renewable Energy, 2019, vol. 145, pp. 2783–2795.

    Article  Google Scholar 

  96. Naghavi, M.S., Esmaeilzadeh, A., Sing, B., Ang, B.C., Yoon, T.M., and Ong, K.S., Experimental and numerical assessments of underlying natural air movement on PV modules temperature, Sol. Energy, 2021, vol. 216, pp. 610–622.

    Article  Google Scholar 

  97. Kislovski, A. and Redl, R., Maximum-power-tracking using positive feedback, Proc. Power Electronics Specialists Conference, 25th Annual IEEE, 1994, vol. 2, pp. 1065–1068.

  98. Yu, G., Jung, Y., Choi, J., Choy, I., Song, J., and Kim, G., A novel two-mode MPPT control algorithm based on comparative study of existing algorithms, Proc. Conf. Record of the 29th IEEE Photovoltaic Specialists Conference, 2002, pp. 1531–1534.

  99. Solodovnik, E., Liu, S., and Dougal, R., Power controller design for maximum power tracking in solar installations, IEEE Trans Power Electron., 2004, vol. 19, no. 5, pp. 1295–1304.

    Article  Google Scholar 

  100. Salas, V., Olias, E., Lazaro, A., and Barrado, A., New algorithm using only one variable measurement applied to a maximum power point tracker, Sol. Energy Mater. Sol. Cells, 2005, vol. 87, nos. 1–4, pp. 675–684.

    Article  Google Scholar 

  101. Islam, M.R., Guo, Y., Zhu, J.G., and Rabbani, M.G., Simulation of PV array characteristics and fabrication of microcontroller based MPPT, 6th Int. Conf. on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2010, pp. 155–158.

  102. Hossain, M.I., Khan, S.A., Shafiullah, M., and Hossain, M.J., Design and implementation of MPPT controlled grid connected photovoltaic system, 2011 IEEE Symposium on Computers and Informatics, 2011, pp. 284–289. https://doi.org/10.1109/ISCI.2011.5958928

  103. Ahmed, J. and Salam, Z., An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency, Appl. Energy, 2015, vol. 150, pp. 97–108.

    Article  Google Scholar 

  104. Abdulrazzaq, A.A. and Ali, A.H., Efficiency performances of two MPPT algorithms for PV system with different solar panels irradiances, Int. J. Power Electron. Drive System (IJPEDS), 2018, vol. 9, no. 4, pp. 1755–1764.

    Google Scholar 

  105. Ali, K., Khan, L., Khan, Q., Ullah, S., Ahmad, S., Mumtaz, S., and Karam, F.W., Robust integral backstepping based nonlinear MPPT control for a PV system, Energies, 2019, vol. 12, no. 16, p. 3180.

    Article  Google Scholar 

  106. Abdul-Ganiyu, S., Quansah, D.A., Ramde, E.W., Seidu, R., and Adaramola, M.S., Investigation of solar photovoltaic-thermal (PVT) and solar photovoltaic (PV) performance: A case study in Ghana, Energies, 2020, vol. 13, no. 11, p. 2701.

    Article  Google Scholar 

  107. Ali, M.N., Mahmoud, K., Lehtonen, M., and Darwish, M.M., Promising MPPT methods combining metaheuristic, fuzzy-logic and ANN techniques for grid-connected photovoltaic, Sensors, 2021, vol. 21, no. 4, p. 1244.

    Article  Google Scholar 

  108. Khodair, D., Salem, M.S., Shaker, A., Abd El Munim, H.E., and Abouelatta, M., Application of modified MPPT algorithms: A comparative study between different types of solar cells, Appl. Sol. Energy, 2020, vol. 56, pp. 309–323.

    Article  Google Scholar 

  109. Tiwari, S., Tiwari, P., and Singh, S.N., Study to improve the efficiency of c-Si material in photovoltaic power plant, Mater. Today: Proc., 2020, vol. 25, no. 4, pp. 691–694.

    Google Scholar 

  110. Tiwari, S. and Tiwari, G.N., Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer, Energy, 2016, vol. 114, pp. 155–164.

    Article  Google Scholar 

  111. Singh, S.N., Tiwari, P., and Tiwari, S., Fundamentals and Innovations in Solar Energy (Energy Systems in Electrical Engineering), Singapore: Springer, 2021.

    Google Scholar 

  112. Tiwari, S., Sahdev, R.K., Kumar, M., Chhabra, D., Tiwari, P., and Tiwari, G.N., Environmental and economic sustainability of PVT drying system: A heat transfer approach, Environ. Prog. Sustainable Energy, 2020, vol. 40, no. 3, p. e13535.

    Google Scholar 

  113. Kalidasan B., Divyabharathi, R., Pandey, A.K., and Saidur, R., Review on economic analysis of photovoltaic thermal systems, IOP Conf. Series: Materials Science and Engineering, 2021, vol. 1127, no. 1, p. 012008.

  114. Al-Waeli, A.H., Kazem, H.A., Chaichan, M.T., and Sopian, K., Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study, Therm. Sci. Eng. Prog., 2019, vol. 11, pp. 213–230.

    Article  Google Scholar 

  115. Hossain, M.S., Pandey, A.K., Selvaraj, J., Rahim, N.A., Islam, M.M., and Tyagi, V.V., Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis, Renewable Energy, 2019, vol. 136, pp. 1320–1336.

    Article  Google Scholar 

  116. Kumar, S., Thermal–economic analysis of a hybrid photovoltaic thermal (PVT) active solar distillation system: Role of carbon credit, Urban Clim., 2013, vol. 5, pp. 112–124.

    Article  Google Scholar 

  117. Ghorbani, B., Mehrpooya, M., and Sharifzadeh, M.M.M., Introducing a hybrid photovoltaic-thermal collector, ejector refrigeration cycle and phase change material storage energy system (energy, exergy and economic analysis), Int. J. Refrig., 2019, vol. 103, pp. 61–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Tiwari.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendices

Appendix I

Formulae used to calculate different heat transfer coefficient used in thermal analysis are as follows

\({{v}_{1}} = \frac{{{{\pi }^{2}}{{d}^{3}}N}}{{4 \times 60 \times {{A}_{{\text{c}}}}}}\)

\({{\dot {M}}_{f}} = \rho {{A}_{{\text{c}}}}{{v}_{1}}\)

\({{U}_{{{\text{tca}}}}} = {{[({{{{l}_{{\text{g}}}}} \mathord{\left/ {\vphantom {{{{l}_{{\text{g}}}}} {{{k}_{{\text{g}}}}}}} \right. \kern-0em} {{{k}_{{\text{g}}}}}}) + ({1 \mathord{\left/ {\vphantom {1 {{{h}_{0}}}}} \right. \kern-0em} {{{h}_{0}}}})]}^{{ - 1}}}\)

\({{h}_{0}} = 5.7 + 3.8v\)

\({{h}_{1}} = 2.8 + 3v\)

\({{h}_{f}} = 2.8 + 3{{v}_{1}}\)

\({{U}_{{{\text{bca}}}}} = {{[({{{{l}_{{\text{g}}}}} \mathord{\left/ {\vphantom {{{{l}_{{\text{g}}}}} {{{k}_{{\text{g}}}}}}} \right. \kern-0em} {{{k}_{{\text{g}}}}}}) + ({1 \mathord{\left/ {\vphantom {1 {{{h}_{i}}}}} \right. \kern-0em} {{{h}_{i}}}})]}^{{ - 1}}}\)

\({{U}_{{{\text{tca}}}}} = {{[({{{{l}_{{\text{g}}}}} \mathord{\left/ {\vphantom {{{{l}_{{\text{g}}}}} {{{k}_{{\text{g}}}}}}} \right. \kern-0em} {{{k}_{{\text{g}}}}}}) + ({1 \mathord{\left/ {\vphantom {1 {{{h}_{f}}}}} \right. \kern-0em} {{{h}_{f}}}})]}^{{ - 1}}}\)

Appendix II

Various design parameters taken for calculation of different temperatures

αc = 0.9

τg = 0.9

βc = 0.89

η0 = 0.16

αt = 0.9

V = 2 m/s

Am =1 m2

Cf =1005 J/kg K

kg = 0.816 w/mK

hduct = 0.05 m

lg = 0.003 m

ρ= 1.17 kg/m3

v1 = 2 m/s

  

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manisha, Pinkey, Kumari, M. et al. A Review on Solar Photovoltaic System Efficiency Improving Technologies. Appl. Sol. Energy 58, 54–75 (2022). https://doi.org/10.3103/S0003701X22010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X22010108

Keywords:

Navigation