Skip to main content
Log in

Optimization of The Thickness of Single-Layer Antireflection SiO\({}_{\mathbf{2}}\) Coating on a Silicon Photodiode Depending of the Characteristics of Incident Light

  • Optical-Physical Methods of Research and Measurement
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Theoretical investigations of the dependence of the optimal thickness of a one-layer antireflection SiO\({}_{2}\) coating on a silicon photodiode on the characteristics of the light incident to the photodiode. It is shown that the optimal thickness of the one-layer antireflection SiO\({}_{2}\) coating for different angular distributions of intensity increases the quantum efficiency of the photodiode by up to 1.1 times in comparison with the classical one-layer antireflection coating with a thickness \(\lambda/4n\), which is optimal in the case of the normal incidence of monochromatic light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. E. S. Putilin, Optical Coatings: Textbook (S.-Peterb. Gos. Univ. ITMO, St. Petersburg, 2010).

    Google Scholar 

  2. A. V. Ershov and A. I. Mashin, Multilayer Optical Coatings: Design, Materials, Peculiarities of Manufacturing Technology by the Electron-Beam Evaporation (Nizhegorodsk. Gos. Univ., Nizhny Novgorod, 2006).

    Google Scholar 

  3. B. K. Ghosh, K. T. Tze Kin, and S. S. Mohd Zainal, ‘‘Different materials coating effect on responsivity of Si UV photo detector,’’ in 2013 IEEE Conf. on Clean Energy and Technology (CEAT), Langkawi, Malaysia, 2013 (IEEE, 2013), pp. 446–449. https://doi.org/10.1109/ceat.2013.6775673

  4. S. W. Glunz and F. Feldmann, ‘‘SiO\({}_{2}\) surface passivation layers—A key technology for silicon solar cells,’’ Sol. Energy Mater. Sol. Cells 185, 260–269 (2018). https://doi.org/10.1016/j.solmat.2018.04.029

    Article  CAS  Google Scholar 

  5. A. V. Malevskaya, Yu. M. Zadiranov, A. A. Blokhin, and V. M. Andreev, ‘‘Studying the formation of antireflection coatings on multijunction solar cells,’’ Tech. Phys. Lett. 45, 1024–1026 (2019). https://doi.org/10.1134/S1063785019100262

    Article  ADS  CAS  Google Scholar 

  6. S. Kh. Suleimanov, V. G. Dyskin, M. U. Dzhanklych, and N. A. Kulagina, ‘‘Effective antireflection coating based on TiO\({}_{2}\)–SiO\({}_{2}\) mixture for solar cells,’’ Tech. Phys. Lett. 39, 305–307 (2013). https://doi.org/10.1134/S1063785013030267

    Article  ADS  CAS  Google Scholar 

  7. F. V. Khoa, P. T. Ngo, and L. A. Gubanova, ‘‘Broadband antireflective coating by the method of molecular layer deposition,’’ Izv. Vyssh. Uchebn. Zaved., Priborostr. 61, 336–341 (2018). https://doi.org/10.17586/0021-3454-2018-61-4-336-341

    Article  Google Scholar 

  8. V. V. Gavrushko and V. A. Lastkin, ‘‘Broadband silicon photodiode,’’ Vestn. Novgorodsk. Gos. Univ., No. 81, 53–55 (2014). https://cyberleninka.ru/article/n/shirokodiapazonnyy-kremnievyy-fotodiod. Cited Februa- ry 6, 2023.

  9. A. K. Budtolaev, G. V. Liberova, and V. I. Khizhnyak, ‘‘Increasing the sensitivity of silicon \(p\)\(i\)\(n\)-photodiodes to the 1.06 mm radiation,’’ Prikl. Fiz., No. 5, 47–49 (2018). https://applphys.orion-ir.ru/appl-18/18-5/PF-18-5-47.pdf. Cited February 6, 2023.

  10. S. C. Lee, H. B. Jeon, K. H. Kang, H. Park, D. H. Lee, M. W. Lee, and K. S. Park, ‘‘Photo-responses of silicon photodiodes with different ARC thicknesses for scintillators,’’ J. Korean Phys. Soc. 75, 1038–1042 (2019). https://doi.org/10.3938/jkps.75.1038

    Article  ADS  CAS  Google Scholar 

  11. M. Zumuukhorol, Z. Khurelbaatar, J.-H. Kim, K.-H. Shim, S.-N. Lee, S.-J. Leem, and Ch.-J. Choi, ‘‘Effect of a SiO\({}_{2}\) anti-reflection layer on the optoelectronic properties of germanium metal-semiconductor-metal photodetectors,’’ J. Semicond. Technol. Sci. 17, 483-491 (2017). https://doi.org/10.5573/jsts.2017.17.4.483

    Article  Google Scholar 

  12. C. G. Kang, A. H. Park, H. K. Cha, J. H. Ha, N.-H. Lee, Yo. S. Kim, J.-H. Oh, J. M. Park, S. M. Kim, S.-J. Lee, and H. S. Kim, ‘‘In-house fabricated Si PIN diode with Al\({}_{2}\)O\({}_{3}\) anti-reflection layer for radiation detectors,’’ in 2017 IEEE Nuclear Science Symp. and Medical Imaging Conf. (NSS/MIC), Atlanta, 2017 (IEEE, 2017), pp. 1–3. https://doi.org/10.1109/nssmic.2017.8532610

  13. B. G. Streetman and S. K. Banerje, Solid State Electronic Devices (Pearson, Boston). https://ftehrani.profile.semnan.ac.ir/downloads/file/221. Cited February 6, 2023.

  14. Yu. N. Kharzheev, ‘‘Scintillation counters in modern high-energy physics experiments,’’ Phys. Part. Nucl. 46, 678–728 (2015). https://doi.org/10.1134/S1063779615040048

    Article  Google Scholar 

  15. S. S. Afanasenko, R. R. Akhmetshin, D. N. Grigoriev, V. F. Kazanin, V. V. Porosev, A. V. Timofeev, and R. I. Shcherbakov, ‘‘Hard gamma quantum flow detector with minimized image noise and improved registration efficiency,’’ Optoelectron., Instrum. Data Process. 57, 185–194 (2021). https://doi.org/10.3103/S8756699021020023

    Article  ADS  Google Scholar 

  16. F. Rêgo and L. Peralta, ‘‘Si-PIN photodiode readout for a scintillating optical fiber dosimeter,’’ Radiat. Meas. 47, 947–950 (2012). https://doi.org/10.1016/j.radmeas.2012.07.019

    Article  CAS  Google Scholar 

  17. A. R. F. Barroso and J. Johnson, ‘‘Optical wireless communications omnidirectional receivers for vehicular communications,’’ Int. J. Electron. Commun. 79, 102–109 (2017). https://doi.org/10.1016/j.aeue.2017.05.042

    Article  Google Scholar 

  18. Kuraray Co., Ltd., Wavelength Shifting Fibers. http://kuraraypsf.jp/psf/ws.html. Cited February 6, 2023.

  19. L. Gao, F. Lemarchand, and M. Lequime, ‘‘Refractive index determination of SiO\({}_{2}\) layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,’’ J. Eur. Opt. Soc.: Rapid Publ. 8, 13010 (2013). https://doi.org/10.2971/jeos.2013.13010

    Article  Google Scholar 

  20. Yu. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Ya. Yang, and Yi. Ji, ‘‘Optical and interfacial layer properties of SiO\({}_{2}\) films deposited on different substrates,’’ Appl. Opt. 53, A83–A87 (2014). https://doi.org/10.1364/ao.53.000a83

    Article  ADS  CAS  PubMed  Google Scholar 

  21. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, ‘‘Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,’’ J. Appl. Phys. 83, 3323–3336 (1998). https://doi.org/10.1063/1.367101

    Article  ADS  CAS  Google Scholar 

  22. G. E. Jellison Jr., ‘‘Optical functions of silicon determined by two-channel polarization modulation ellipsometry,’’ Opt. Mater. 1, 41–47 (1992). https://doi.org/10.1016/0925-3467(92)90015-f

    Article  ADS  CAS  Google Scholar 

  23. J. Šik, J. Hora, and J. Humlíček, ‘‘Optical functions of silicon at high temperatures,’’ J. Appl. Phys. 84, 6291–6298 (1998). https://doi.org/10.1063/1.368951

    Article  ADS  Google Scholar 

  24. D. E. Aspnes and A. A. Studna, ‘‘Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,’’ Phys. Rev. B 27, 985–1009 (1983). https://doi.org/10.1103/physrevb.27.985

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Timofeev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Translated by E. Smintova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, A.V., Mil’shtein, A.I. & Grigor’ev, D.N. Optimization of The Thickness of Single-Layer Antireflection SiO\({}_{\mathbf{2}}\) Coating on a Silicon Photodiode Depending of the Characteristics of Incident Light. Optoelectron.Instrument.Proc. 59, 612–619 (2023). https://doi.org/10.3103/S8756699023050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699023050096

Keywords:

Navigation