Skip to main content
Log in

From Self-Organization of Monoatomic Steps on the Silicon Surface to Subnanometer Metrology

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The article presents how the understanding of the fundamental processes of self-organization and morphological transformations of the atomically clean Si(111) surface as a result of the study using in situ ultrahigh vacuum reflection electron microscopy can be applied to metrology. The method of high-resolution transmission electron microscopy is used to show that the native oxide formed on the Si(111) surface in atmospheric conditions replicates the atomic step height with high accuracy. The techniques for creating vertical measures in the range 0.31–31 nm with an error of less than 0.05 nm in the entire measurement range are developed on this basis. It is shown that it is possible to create extremely wide atomically smooth surfaces (up to 230 \(\mu\)m) and use them as reference mirrors in interferometric microscopes. Crystal samples containing a certain number of monoatomic steps and atomically smooth surface areas are included in the State Secondary Reference Standard as a measure of angstrom height and angstrom flatness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. W. Cresswell, R. A. Allen, W. F. Guthrie, Ch. E. Murabito, R. G. Dixson, and A. Hunt, ‘‘Comparison of SEM and HRTEM CD measurements extracted from test structures having feature linewidths from 40 to 240 nm,’’ IEEE Trans. Instrum. Meas. 57, 100–109 (2008). https://doi.org/10.1109/TIM.2007.908313

    Article  Google Scholar 

  2. M. Toth, Ch. J. Lobo, W. R. Knowles, M. R. Phillips, M. T. Postek, and A. E. Vladár, ‘‘Nanostructure fabrication by ultrahigh-resolution environmental scanning electron microscopy,’’ Nano Lett. 7, 525–530 (2007). https://doi.org/10.1021/nl062848c

    Article  ADS  Google Scholar 

  3. M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, ‘‘A test object with a line width less than 10 nm for scanning electron microscopy,’’ Meas. Tech. 51, 839–843 (2008). https://doi.org/10.1007/s11018-008-9135-9

    Article  Google Scholar 

  4. I. Misumi, G. Dai, and G.-Sh. Peng, ‘‘Final report on supplementary comparison APMP.L-S2: bilateral comparison on pitch measurements of nanometric lateral scales (50 nm and 100 nm) between NMIJ/AIST (Japan) and PTB (Germany),’’ Metrologia 44, 04006 (2007). https://doi.org/10.1088/0026-1394/44/1A/04006

    Article  ADS  Google Scholar 

  5. I. Misumi, G. Dai, M. Lu, O. Sato, K. Sugawara, S. Gonda, T. Takatsuji, H.-U. Danzebrink, and L. Koenders, ‘‘Bilateral comparison of 25 nm pitch nanometric lateral scales for metrological scanning probe microscopes,’’ Meas. Sci. Technol. 21, 035105 (2010). https://doi.org/10.1088/0957-0233/21/3/035105

    Article  ADS  Google Scholar 

  6. D. V. Shcheglov, L. I. Fedina, and A. V. Latyshev, Silicon Metrology in Development of Nanotechnologies (Parallel’, Novosibirsk, 2018).

    Google Scholar 

  7. A. Bergamin, G. Cavagnero, G. Mana, and G. Zosi, ‘‘Lattice parameter and thermal expansion of monocrystalline silicon,’’ J. Appl. Phys. 82, 5396–5400 (1997). https://doi.org/10.1063/1.366308

    Article  ADS  Google Scholar 

  8. A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, and S. I. Stenin, ‘‘Transformations on clean Si(111) stepped surface during sublimation,’’ Surf. Sci. 213, 157–169 (1989). https://doi.org/10.1016/0039-6028(89)90256-2

    Article  ADS  Google Scholar 

  9. S. Stoyanov, ‘‘Heating current induced conversion between 2 \(\times\) 1 and 1 \(\times\) 2 domains at vicinal (001) Si surfaces—can it be explained by electromigration of Si adatoms?,’’ Jpn. J. Appl. Phys. 29, L659–L662 (1990). https://doi.org/10.1143/JJAP.29.L659

    Article  ADS  Google Scholar 

  10. A. Natori, H. Fujimura, and H. Yasunaga, ‘‘Step structure transformation of Si(001) surface induced by current,’’ Jpn. Journ. Appl. Phys. 31, 1164–1169 (1992). https://doi.org/10.1143/JJAP.31.1164

    Article  ADS  Google Scholar 

  11. S. V. Khare, T. L. Einstein, and N. C. Bartelt, ‘‘Dynamics of step doubling: simulations for a simple model and comparison with experiment,’’ Surf. Sci. 339, 353–362 (1995). https://doi.org/10.1016/0039-6028(95)00609-5

    Article  ADS  Google Scholar 

  12. D. Kandel and J. D. Weeks, ‘‘Step motion, patterns, and kinetic instabilities on crystal surfaces,’’ Phys. Rev. Lett. 72, 1678–1681 (1994). https://doi.org/10.1103/PhysRevLett.72.1678

    Article  ADS  Google Scholar 

  13. A. Pimpinelli and J. Villain, ‘‘What does an evaporating surface look like?,’’ Phys. A (Amsterdam, Neth.) 204, 521–542 (1994). https://doi.org/10.1016/0378-4371(94)90446-4

  14. A. B. Pang, K. L. Man, M. S. Altman, T. J. Stasevich, F. Szalma, and T. L. Einstein, ‘‘Step line tension and step morphological evolution on the Si(111) (1 \(\times\) 1) surface,’’ Phys. Rev. B 77, 115424 (2008). https://doi.org/10.1103/PhysRevB.77.115424

    Article  ADS  Google Scholar 

  15. P. Finnie and Y. Homma, ‘‘Motion of atomic steps on ultraflat Si (111): constructive collisions,’’ J. Vac. Sci. Technol., A 18, 1941–1945 (2000). https://doi.org/10.1116/1.582450

    Article  ADS  Google Scholar 

  16. A. L. Aseev, A. V. Latyshev, and A. B. Krasilnikov, ‘‘Reflection electron microscopy observation of the behavior of monoatomic steps on the silicon surfaces,’’ Surf. Rev. Lett. 4, 551–558 (1997). https://doi.org/10.1142/S0218625X97000535

    Article  ADS  Google Scholar 

  17. A. V. Latyshev, A. B. Krasilnikov, and A. L. Aseev, ‘‘Application of ultrahigh vacuum reflection electron microscopy for the study of clean silicon surfaces in sublimation, epitaxy, and phase transitions,’’ Microsc. Res. Tech. 20, 341–351 (1992). https://doi.org/10.1002/jemt.1070200405

    Article  Google Scholar 

  18. S. V. Sitnikov, A. V. Latyshev, and S. S. Kosolobov, ‘‘Advacancy-mediated atomic steps kinetics and two-dimensional negative island nucleation on ultra-flat Si(111) surface,’’ J. Cryst. Growth 457, 196–201 (2017). https://doi.org/10.1016/j.jcrysgro.2016.05.048

    Article  ADS  Google Scholar 

  19. C. Alfonso, J. M. Bermond, J. C. Heyraud, and J. J. Métois, ‘‘The meandering of steps and the terrace width distribution on clean Si (111): an in-situ experiment using reflection electron microscopy,’’ Surf. Sci. 262, 371–381 (1992). https://doi.org/10.1016/0039-6028(92)90133-Q

    Article  ADS  Google Scholar 

  20. D. V. Shcheglov, S. S. Kosolobov, E. E. Rodyakina, and A. V. Latyshev, RF Patent No. 2371674, Byull., No. 30 (2009).

  21. A. V. Latyshev, A. B. Krasilnikov, and A. L. Aseev, ‘‘UHV REM study of the anti-band structure on the vicinal Si (111) surface under heating by a direct electric current,’’ Surf. Sci. 311, 395–403 (1994). https://doi.org/10.1016/0039-6028(94)91429-X

    Article  ADS  Google Scholar 

  22. K. Thürmer, D.-J. Liu, E. D. Williams, and J. D. Weeks, ‘‘Onset of step antibanding instability due to surface electromigration,’’ Phys. Rev. Lett. 83, 5531–5534 (1999). https://doi.org/10.1103/PhysRevLett.83.5531

    Article  ADS  Google Scholar 

  23. E. E. Rodyakina, S. S. Kosolobov, and A. V. Latyshev, ‘‘Drift of adatoms on the (111) silicon surface under electromigration conditions,’’ JETP Lett. 94, 147 (2011). https://doi.org/10.1134/S0021364011140128

    Article  ADS  Google Scholar 

  24. Yo. Homma, N. Aizawa, and T. Ogino, ‘‘Ultra-large-scale step-free terraces formed at the bottom of craters on vicinal Si(111) surfaces,’’ Jpn. J. Appl. Phys. 35, L241–L243 (1996). https://doi.org/10.1143/JJAP.35.L241

    Article  ADS  Google Scholar 

  25. S. Tanaka, C. C. Umbach, J. M. Blakely, R. M. Tromp, and M. Mankos, ‘‘Fabrication of arrays of large step-free regions on Si(001),’’ Appl. Phys. Lett. 69, 1235–1237 (1996). https://doi.org/10.1063/1.117422

    Article  ADS  Google Scholar 

  26. D. Lee and J. Blakely, ‘‘Formation and stability of large step-free areas on Si(001) and Si(111),’’ Surf. Sci. 445, 32–40 (2000). https://doi.org/10.1016/S0039-6028(99)01034-1

    Article  ADS  Google Scholar 

  27. M. Uwaha, ‘‘Introduction to the BCF theory,’’ Prog. Cryst. Growth Charact. Mater. 62, 58–68 (2016). https://doi.org/10.1016/j.pcrysgrow.2016.04.002

    Article  Google Scholar 

  28. W. K. Burton, N. Cabrera, and F. C. Frank, ‘‘The growth of crystals and the equilibrium structure of their surfaces,’’ Philos. Trans. R. Soc., A 243, 299–358 (1951). https://doi.org/10.1098/rsta.1951.0006

  29. Yo. Homma, H. Hibino, T. Ogino, and N. Aizawa, ‘‘Sublimation of the Si(111) surface in ultrahigh vacuum,’’ Phys. Rev. B 55, R10237–R10240 (1997). https://doi.org/10.1103/PhysRevB.55.R10237

    Article  ADS  Google Scholar 

  30. K. Takayanagi and Y. Tanishiro, ‘‘Dimer-chain model for the 7 \(\times\) 7 and the 2 \(\times\) 8 reconstructed surfaces of reconstructed surfaces of Si(111) and Ge(111),’’ Phys. Rev. B 34, 1034–1040 (1986). https://doi.org/10.1103/PhysRevB.34.1034

    Article  ADS  Google Scholar 

  31. Y.-N. Yang and E. D. Williams, ‘‘High atom density in the ‘‘1 \(\times\) 1’’ phase and origin of the metastable reconstructions on Si(111),’’ Phys. Rev. Lett. 72, 1862–1865 (1994). https://doi.org/10.1103/PhysRevLett.72.1862

    Article  ADS  Google Scholar 

  32. D. A. Nasimov, D. V. Sheglov, E. E. Rodyakina, S. S. Kosolobov, L. I. Fedina, S. A. Teys, and A. V. Latyshev, ‘‘AFM and STM studies of quenched Si(111) surface,’’ Phys. Low-Dim. Str. 3/4, 157–166 (2003).

    Google Scholar 

  33. Y. Fukaya and Y. Shigeta, ‘‘New phase and surface melting of Si(111) at high temperature above the (7 \(\times\) 7)–(1 \(\times\) 1) phase transition,’’ Phys. Rev. Lett. 85, 5150–5153 (2000). https://doi.org/10.1103/PhysRevLett.85.5150

    Article  ADS  Google Scholar 

  34. S. V. Sitnikov, S. S. Kosolobov, and A. V. Latyshev, RF Patent No. 2453874, Byull., No. 17 (2012).

  35. S. V. Sitnikov, S. S. Kosolobov, and A. V. Latyshev, RF Patent No. 2649058, Byull., No. 10 (2018).

  36. State Register of Measurement Instruments, No. 41678-09.

  37. G. N. Vishnyakov, G. G. Levin, V. L. Minaev, and I. Yu. Tsel’mina, ‘‘Interference microscopy of subnanometer depth resolution: experimental study,’’ Opt. Spectrosc. 116, 156–160 (2014). https://doi.org/10.1134/S0030400X14010226

    Article  Google Scholar 

  38. V. L. Minaev, G. G. Levin, A. V. Latyshev, and D. V. Shcheglov, ‘‘Measurement of the profile of the surface of monoatomic multilayer silicon nanostructures by an interference method,’’ Meas. Tech. 60, 1087–1090 (2018). https://doi.org/10.1007/s11018-018-1322-8

    Article  Google Scholar 

  39. E. V. Sysoev, ‘‘White-light interferometer with partial correlogram scanning,’’ Optoelectron., Instrum. Data Process. 43, 83–89 (2007). https://doi.org/10.3103/S8756699007010128

    Article  Google Scholar 

  40. E. Sysoev, S. Kosolobov, R. Kulikov, A. Latyshev, S. Sitnikov, and I. Vykhristyuk, ‘‘Interferometric surface relief measurements with subnano/picometer height resolution,’’ Meas. Sci. Rev. 17, 213–218 (2017). https://doi.org/10.1515/msr-2017-0025

    Article  Google Scholar 

  41. E. V. Sysoev, Candidate’s Dissertation in Engineering (Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2010).

  42. E. V. Sysoev, ‘‘Nanorelief measurements errors for a white-light interferometer with chromatic aberrations,’’ Key Eng. Mater. 437, 51–55 (2010). https://doi.org/10.4028/www.scientific.net/KEM.437.51

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the CKP Nanostruktury from the Rzhanov Institute of Semiconductor Physics SB RAS.

Funding

This work was supported by the Russian Science Foundation, project no. 14-22-00143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Sheglov.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheglov, D.V., Sitnikov, S.V., Fedina, L.I. et al. From Self-Organization of Monoatomic Steps on the Silicon Surface to Subnanometer Metrology. Optoelectron.Instrument.Proc. 56, 533–544 (2020). https://doi.org/10.3103/S8756699020050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020050118

Keywords:

Navigation