Skip to main content
Log in

Determination of the Number of Free Water Molecules in Aqueous Solutions on the Basis of Interrelated Consideration of the Polarization Processes in Water in the THz Frequency Range

  • OPTICAL AND MICROWAVE SPECTROSCOPY OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The structure of aqueous solutions has been studied for a long time; however, many things still remain unclear. One of the ways to describe the water structure is the statistical approach, within which the distribution of water molecules over mobility, connectivity, number of hydrogen bonds, etc. is analyzed. An important parameter in this consideration is the equilibrium number of free water molecules, which are not bound by hydrogen bonds and do not enter the composition of hydrate shells. There are not any completely justified approaches for calculating the fraction of free water molecules in solutions. Aqueous solutions are known to have a weak band of the relaxation type (differing from the classical Debye relaxation band) in the THz frequency range. This band is assigned to the orientational relaxation of free water molecules. In this paper we theoretically consider the process of orientational relaxation of free water molecules in an aqueous solution in the THz range. The theory is based on the Onsager polarization model, modified for application in the THz range. The field screening due to the higher frequency polarization processes is taken into account. Particular attention is paid to the field screening due to the orientational polarization of bound water molecules. Based on this consideration the ratio between the fractions of free water molecules in solution and the parameters of spectral bands of water molecular dynamics is obtained. The calculated numbers of free water molecules, obtained within the proposed theory and other known (simpler) approaches, are compared for some solutions. It is shown that, if the field screening is taken into account when considering the orientational polarization of free water molecules, their number increases. For example, the number of free molecules for liquid water at 25°С, with complete consideration of screening, is about 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. J. D. Bernal and R. Fowler, “A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions,” J. Chem. Phys. 1 (8), 515–548 (1933). https://doi.org/10.1063/1.1749327

    Article  ADS  Google Scholar 

  2. J. Frenkel, Kinetic Theory of Liquids (Oxford Univ. Press, Oxford, 1946).

    MATH  Google Scholar 

  3. O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, New York, 1965).

    Google Scholar 

  4. I. Z. Fisher, Statistical Theory of Liquids (Univ. of Chicago Press, Chicago, 1964).

    Google Scholar 

  5. https://water.lsbu.ac.uk/water/water_anomalies.html

  6. N. A. Chumaevskii and M. N. Rodnikova, “Some peculiarities of liquid water structure,” J. Mol. Liq. 106 (2–3), 167–177 (2003). https://doi.org/10.1016/S0167-7322(03)00105-3

  7. B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173 (2009). https://doi.org/10.1039/B804734K

    Article  ADS  Google Scholar 

  8. S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Nat. Acad. Sci. 104 (52), 20749–20752 (2007). https://doi.org/10.1073/pnas.0709207104

    Article  ADS  Google Scholar 

  9. V. C. Nibali and M. Havenith, “New insights into the role of water in biological function: Terahertz absorption spectroscopy and molecular dynamics simulations studies of the solvation dynamics of biomolecules,” J. Am. Chem. Soc. 136 (37), 12800–12807 (2014). https://doi.org/10.1021/ja504441h

    Article  Google Scholar 

  10. N. V. Penkov, “Peculiarities of the perturbation of water structure by ions with various hydration in concentrated solutions of CaCl2, CsCl, KBr, and KI,” Phys. Wave Phenom. 27 (2), 128–134 (2019). https://doi.org/10.3103/S1541308X19020079

    Article  ADS  Google Scholar 

  11. S. R. Kabir, K. Yokoyama, K. Mihashi, T. Kodama, and M. Suzuki, “Hyper-mobile water is induced around actin filaments,” Biophys. J. 85 (5), 3154–3161 (2003). https://doi.org/10.1016/S0006-3495(03)74733-X

    Article  ADS  Google Scholar 

  12. K. J. Tielrooij, D. Paparo, L. Piatkowski, H. J. Bakker, and M. Bonn, “Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy,” Biophys. J. 97 (9), 2484–2492 (2009). https://doi.org/10.1016/j.bpj.2009.08.024

    Article  ADS  Google Scholar 

  13. N. Penkov, V. Yashin, E. Fesenko, Jr., A. Manokhin, and E. Fesenko, “A study of the effect of a protein on the structure of water in solution using terahertz time-domain spectroscopy,” Appl. Spectrosc. 72 (2), 257–267 (2018). https://doi.org/10.1177/0003702817735551

    Article  ADS  Google Scholar 

  14. N. V. Penkov, V. A. Yashin, and K. N. Belosludtsev, “Hydration shells of DPPC liposomes from the point of view of terahertz time-domain spectroscopy,” Appl. Spectrosc. 75 (2), 189–198 (2021). https://doi.org/10.1177/0003702820949285

    Article  ADS  Google Scholar 

  15. N. V. Penkov and N. Penkova, “Key differences of the hydrate shell structures of ATP and Mg·ATP revealed by terahertz time-domain spectroscopy and dynamic light scattering,” J. Phys. Chem. B 125 (17), 4375–4382 (2021). https://doi.org/10.1021/acs.jpcb.1c02276

    Article  Google Scholar 

  16. N. V. Penkov, N. A. Penkova, and V. I. Lobyshev, “Special role of Mg2+ in the formation of the hydration shell of adenosine triphosphate,” Phys. Wave Phenom. 30 (5), 344–350 (2022). https://doi.org/10.3103/S1541308X22050090

    Article  ADS  Google Scholar 

  17. N. A. Penkova, M. G. Sharapov, and N. V. Penkov, “Hydration shells of DNA from the point of view of terahertz time-domain spectroscopy,” Int. J. Mol. Sci. 22 (20), 11089–11104 (2021). https://doi.org/10.3390/ijms222011089

    Article  Google Scholar 

  18. N. V. Penkov, “Relationships between molecular structure of carbohydrates and their dynamic hydration shells revealed by terahertz time-domain spectroscopy,” Int. J. Mol. Sci. 22 (21), 11969–11988 (2021). https://doi.org/10.3390/ijms222111969

    Article  Google Scholar 

  19. H. Yada, M. Nagai, and K. Tanaka, “Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 464 (4–6), 166–170 (2008). https://doi.org/10.1016/j.cplett.2008.09.015

  20. N. Penkov, N. Shvirst, V. Yashin, E. Fesenko, Jr., and E. Fesenko, “Terahertz spectroscopy applied for investigation of water structure,” J. Phys. Chem. B 119 (39), 12664–12670 (2015). https://doi.org/10.1021/acs.jpcb.5b06622

    Article  Google Scholar 

  21. J. Marti, J. A. Padro, and E. Guardia, “Molecular dynamics simulation of liquid water along the coexistence curve: Hydrogen bonds and vibrational spectra,” J. Chem. Phys. 105 (2), 639–649 (1996). https://doi.org/10.1063/1.471932

    Article  ADS  Google Scholar 

  22. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W.-H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85 (12), 6970–6982 (1986). https://doi.org/10.1063/1.451384

    Article  ADS  Google Scholar 

  23. K. Shiraga, T. Suzuki, N. Kondo, T. Tajima, M. Nakamura, H. Togo, A. Hirata, K. Ajito, and Y. Ogawa, “Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network,” J Chem Phys. 142 (23), 234504 (2015). https://doi.org/10.1063/1.4922482

    Article  ADS  Google Scholar 

  24. K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015). https://doi.org/10.1016/j.carres.2015.01.002

    Article  Google Scholar 

  25. K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146 (10), 105102 (2017). https://doi.org/10.1063/1.4978232

    Article  ADS  Google Scholar 

  26. N. V. Penkov, V. A. Yashin, E. E. Fesenko, Jr., and E. E. Fesenko, “Calculation of the amount of free water molecules in aqueous solutions by means of spectral parameters from the terahertz frequency domain taking into account processes of screening,” Biophysics 59 (3), 347–350 (2014). https://doi.org/10.1134/S0006350914030178

    Article  Google Scholar 

  27. H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958), 2nd ed. https://doi.org/10.1063/1.3060682

  28. N. V. Penkov, “Calculation of the proportion of freewater molecules in aqueous solutions using the parameters of their dielectric permittivity in the terahertz range, based on the onsager theory,” Photonics 10 (1), 44 (2023). https://doi.org/10.3390/photonics10010044

    Article  Google Scholar 

  29. P. J. W. Debye, Polar Molecules (Dover, New York, 1929).

    MATH  Google Scholar 

  30. L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58 (8), 1486–1493 (1936). https://doi.org/10.1021/ja01299a050

    Article  Google Scholar 

  31. J. G. Kirkwood, “The dielectric polarization of polar liquids,” J. Chem. Phys. 7 (10), 911–919 (1939). https://doi.org/10.1063/1.1750343

    Article  ADS  Google Scholar 

  32. R. A. Robinson and R. H. Stokes, Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion (Academic, New York, 1955), 2nd ed.

    Google Scholar 

  33. A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1 (4), 393–415 (2000). https://doi.org/10.1023/A:1026511515005

    Article  Google Scholar 

  34. A. R. von Hippel, “The dielectric relaxation spectra of water, ice and aqueous solutions, and their interpretation. II. Tentative interpretation of the relaxation spectrum of water in the time and frequency domain,” IEEE Trans. Electr. Insul. 23 (5), 817–823 (1988). https://doi.org/10.1109/14.8746

    Article  Google Scholar 

  35. R. Buchner, J. Barthel, and J. Stauber, “The dielectric relaxation of water between 0°C and 35°C,” Chem. Phys. Lett. 306 (1–2), 57–63 (1999). https://doi.org/10.1016/S0009-2614(99)00455-8

  36. N. V. Penkov, N. E. Shvirst, V. A. Yashin, and E. E. Fesenko, “On singularities of molecular relaxation in water solutions,” Biophysics 58 (6), 731–738 (2013). https://doi.org/10.1134/S000635091306016X

    Article  Google Scholar 

  37. W. J. Ellison, “Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C,” J. Phys. Chem. Ref. Data 36 (1), 1–18 (2007). https://doi.org/10.1063/1.2360986

    Article  ADS  Google Scholar 

  38. W. F. Murphy, “The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule,” J. Chem. Phys. 67 (12), 5877–5882 (1977). https://doi.org/10.1063/1.434794

    Article  ADS  Google Scholar 

  39. The International Association for the Properties of Water and Steam (Gaithersburg, MD, USA, September 9–14, 2001). http://www.iapws.org/relguide/fundam.pdf

  40. N. V. Penkov and N. A. Penkova, “Effective medium model applied to biopolymer solutions,” Appl. Spectrosc. 75 (12), 1510–1515 (2021). https://doi.org/10.1177/00037028211042027

    Article  ADS  Google Scholar 

  41. V. I. Tikhonov and A. A. Volkov, “Separation of water into its ortho and para isomers,” Science 296 (5577), 2363 (2002). https://doi.org/10.1126/science.1069513

    Article  Google Scholar 

  42. S. M. Pershin, “Effect of quantum differences of ortho and para H2O spin-isomers on water properties: Biophysical aspect,” Biophysics 58 (5), 723–730 (2013). https://doi.org/10.1134/S0006350913050114

    Article  Google Scholar 

  43. A. F. Bunkin and S. M. Pershin, “Study of hydration of biomolecules and nanoparticles in aqueous solutions and suspensions using coherent laser spectroscopy,” Phys. Wave Phenom. 27 (2), 149–156 (2019). https://doi.org/10.3103/S1541308X19020110

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was performed on the equipment of the Optical Microscopy and Spectrophotometry Core Facility of the Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” (https://www.pbcras.ru/services/tskp/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Penkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penkov, N.V., Penkova, N.A. Determination of the Number of Free Water Molecules in Aqueous Solutions on the Basis of Interrelated Consideration of the Polarization Processes in Water in the THz Frequency Range. Phys. Wave Phen. 31, 171–179 (2023). https://doi.org/10.3103/S1541308X2303007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X2303007X

Keywords:

Navigation