Skip to main content
Log in

The Feedback in a Plasma Relativistic Microwave Amplifier of Monochromatic Signal

  • PLASMA PHYSICS AND MICROWAVES
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A plasma relativistic microwave amplifier with a gain band of about 1.5 GHz and maximum gain at a frequency of about 3 GHz has been experimentally investigated. Previously the wide gain band of this amplifier made it possible to demonstrate the amplifier frequency tuning in the range from 2.4 to 3.1 GHz. Microwave radiation with a power of 100–150 MW and a pulse duration of 300 ns was obtained using a 2-kA electron beam having an electron energy of 500 keV. The high-current electron beam formed in the explosive emission cathode accelerator has a high noise level in the aforementioned frequency range. This leads to the transition from the mode of input signal amplification to the amplifier self-excitation in a wide frequency band. To suppress the latter process, one must suppress the feedback that is due to the wave reflection from the elements of the amplifier output part. The feedback in the amplifier is suppressed by incorporating a ceramic microwave absorber into its electrodynamic system. The role of the absorber in the suppression of amplifier noise at an input signal frequency of 2.716 GHz is investigated. The parameters of a microwave amplifier without a feedback (with an absorber) are compared with the parameters of a microwave amplifier having a feedback (without an absorber).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. D. Shiffter, J. D. Ivers, G. S. Kerslick, J.A. Nation, and L.A. Schachter, “Sideband development in a high-power traveling-wave tube microwave amplifier,” Appl. Phys. Lett. 58 (9), 899–901 (1991). https://doi.org/10.1063/1.104470

    Article  ADS  Google Scholar 

  2. A. B. Volkov, N. I. Zaitsev, E. B. Ilyakov, N. F. Kovalev, B. D. Kol’chugin, G. S. Korablev, and I. S. Kulagin, “Realization of high gain in a power microwave pulse amplifier with explosive emission gun,” Pis’ma Zh. Tekh. Fiz. 18 (12), 6–10 (1992) [in Russian].

    Google Scholar 

  3. Y. Y. Lau, M. Friedman, J. Krall, and V. Serlin, “Relativistic klystron amplifiers driven by modulated intense relativistic electron beams,” IEEE Trans. Plasma Sci. 18 (3), 553–569 (1990). https://doi.org/10.1109/27.55927

    Article  ADS  Google Scholar 

  4. E. B. Abubakirov, A. N. Denisenko, M. I. Fuks, N. G. Kolganov, N. F. Kovalev, M. I. Petelin, A. V. Savelyev, E. Schamiloglu, E. I. Soluyanov, and V. V. Yastrebov, “An X-band gigawatt amplifier,” IEEE Trans. Plasma Sci. 30 (3), 1041–1052 (2002). https://doi.org/10.1109/TPS.2002.801601

    Article  ADS  Google Scholar 

  5. J. Zhang, D. Zhang, Y. Fan, J. He, X. Ge, X. Zhang, J. Ju, and T. Xun, “Progress in narrowband high-power microwave sources,” Phys. Plasmas 27 (1), 010501 (2020). https://doi.org/10.1063/1.5126271

    Article  ADS  Google Scholar 

  6. Zh. Liu, H. Huang, X. Jin, L. Lei, L. Zhu, L. Li, Sh. Li, W. Yan, and H. He, “Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier,” Phys. Plasmas 23 (9), 093110 (2016). https://doi.org/10.1063/1.4962760

    Article  ADS  Google Scholar 

  7. P. S. Strelkov, “Experimental relativistic plasma microwave electronics,” Phys.-Usp. 62 (5), 465–486 (2019). https://doi.org/10.3367/UFNe.2018.09.038443

    Article  ADS  Google Scholar 

  8. M. Birau, M. A. Krasil’nikov, M. V. Kuzelev, and A. A. Rukhadze, “Problems in the theory of relativistic plasma microwave electronics,” Phys.-Usp. 40 (10), 975–992 (1997). https://doi.org/10.1070/PU1997v040n10ABEH000287

    Article  ADS  Google Scholar 

  9. P. S. Strelkov, I. E. Ivanov, E. D. Dias Mikhailova, and D. V. Shumeiko, “Spectra of plasma relativistic microwave amplifier of monochromatic signal,” Plasma Phys. Rep. 47 (3), 269–278 (2021). https://doi.org/10.1134/S1063780X21030090

    Article  ADS  Google Scholar 

  10. I. S. Alekseev, I. E. Ivanov, P. S. Strelkov, V. P. Tarakanov, and D. K. Ulyanov, “Visualization of the microwave beam generated by a plasma relativistic microwave amplifier,” Plasma Phys. Rep. 43 (3), 340–345 (2017). https://doi.org/10.1134/S1063780X17030035

    Article  ADS  Google Scholar 

  11. P. S. Strelkov, V. P. Tarakanov, D. E. Dias Mikhailova, I. E. Ivanov, and D. V. Shumeiko, “Ultrawideband plasma relativistic microwave source,” Plasma Phys. Rep. 45 (4), 345–354 (2019). https://doi.org/10.1134/S1063780X19030097

    Article  ADS  Google Scholar 

  12. V. I. Gaiduk, K. I. Palatov, and D. M. Petrov, Physical Foundations of Microwave Electronics (Sov. Radio, Moscow, 1971) [in Russian].

    Google Scholar 

  13. I. N. Kartashov and M. V. Kuzelev, “Suppression of self-excitation by a local absorber in a relativistic plasma microwave amplifier,” Phys. Wave Phenom. 30 (5), 330–335 (2022). https://doi.org/10.3103/S1541308X2205003X

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Strelkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelkov, P.S., Kartashov, I.N. & Dias-Mikhailova, E.D. The Feedback in a Plasma Relativistic Microwave Amplifier of Monochromatic Signal. Phys. Wave Phen. 30, 355–363 (2022). https://doi.org/10.3103/S1541308X22060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22060073

Keywords:

Navigation